

Stormwater Design Report

Ashville Concourse

State Route 752, Village of Ashville, Ohio July 26, 2023

Need to use City of Columbus rainfall data.

Critical storm can be applied to entire site by either:

- a) on-site pre (CN=79) vs on-site post (CN=95) applied to entire tributary area, or;
- b) basin tributary pre (all CN=79) vs basin tributary post (CN=actual post)

Allowable release for the basin is based on the entire basin tributary pre of 79. Allowable release should be controlled from the 100 year post to 10 year pre.

This site will not have a free outfall as modeled. Basin must model the downstream tailwater conditions. For this site, assume the 5-year tailwater is the 30" pipe flowing full and the 100-year tailwater is the top of casting at the tie-in structure. Other tailwater elevations can be interpolated from these values. Show tailwater elevations in a table in the report. Re-check the tie-in structure elevations. The plan elevations show a structure depth of 3.25', while the survey shows 4.75'. Also the inverts on the plans do not make sense as the 30" is higher than the incoming pipes. In short, the basin model must accurately represent the actual developed conditions.

Prepared by:

Provide sediment basin details and calculations in the report. Dewatering elevations, sediment depths, skimmer design, etc.

Craig E. Stevenson PE, PS
Harral and Stevenson
Civil Engineering and Surveying

Sediment basin spreadsheet has been added with the skimmer sizing calculations.

You are mixing flows from offsite areas and removing an existing basin. The flows from these offsite areas must be included in the calculations and sizing of the detention facility.

The offsite and on site areas have been combined as one. Reference updated trib maps for new design.

Reviewed

08/18/2023 Christopher M. Tebbe, P.E.

Provide response to comments on this pdf. Use a different color to differentiate original comments and responses.

Noted.

www.harralstevenson.com

Executive Summary

The proposed project consists of the development of 3-stoarge buildings on a 4.42-acre parcel of land that is currently a grass field. Construction activities will include construction of said storage buildings, parking lot, and a detention pond and associated utilities.

The design of the detention basin is based on the proposed layout as well as future impervious area, as shown in the Post Developed Tributary Map. The future additions are assumed to be majority impervious, so the design of the basin has accounted for all future area.

Existing Site

Pre-Developed area "A" consists of 4.42 acres of grass that drains from the east side of the property to the west side of the property where runoff sheet drains across the site and then enters an existing storm sewer on the west side of the property. This area combines with an Offsite Tributary that consists of 4.54 acres (Labeled as Pre-Developed B on the predeveloped tributary map) and enters an existing dry detention basin. The dry-detention basin then outlets into an existing ditch that runs north and south.

The existing soils on the site are class C hydrologic group. Additionally, 100.00% of the soil is Crosby Silt Loam (CrA). All curve numbers were assigned using the class C hydrologic soil group.

Quantity Control Design Approach

The proposed grading scheme is designed to direct the Stormwater to the proposed detention pond located at the west corner of the site. This area is labeled as Post-Developed A on the Post-Developed tributary map. Post-Developed B (off site) is also designed that it will continue its existing flow path which will route through the proposed pond. Post-Developed C is a direct discharge of a fringe area that is unable to be detained in the detention pond.

Based on the discussion above, our design proposes to add two storm sewer runs, one along the north side and one along the south side of the property. Both will run east to west. After the Stormwater makes its way through the pipes it will be discharged into a detention basin. From there the Stormwater will outlet into an existing catch basin in the northwest corner of the property.

Our design also accounts for all future additions. Post-Developed A on the Post-Developed tributary map accounts for 3.13 acres of impervious area which includes all future impervious area.

By comparing the 1 year predeveloped vs. post developed runoff volumes we determined there to be a 38.2% increase which indicates a 5 year critical storm event.

Critical Storm		1 Year Volume
Combined		C.F.
Predeveloped		28308
Postdeveloped		39122
	% increase	38.2%
	Critical	
	Storm	5 Year

See cover for critical storm options. The predeveloped condition of area B must be based on the conditions before development (CN=79).

The layout of the trib maps have been updated.
Reference them for new layout and design.

100 post to 10 pre

This sentence has been changed to add the 100 year post has to be less than the 10 year pre.

The outlet structure is designed to detain runoff from the improved area such that the total release rate from the site in each postdeveloped event up to and including the 5 year storm would in less than the peak rate from the 1 year predeveloped storm. Higher year events are restricted to the equivalent predeveloped storm event. The outlet control structure will consist of a PVC pipe extended into the basin from the adjacent catch basin and protected by a gravel filter with the orifice inside the structure to control the Water Quality Volume. The second stage will consist of a 1.5" Orifice cast into the outlet control structure wall with at trash rack to prevent clogging from debris. The top of the catch basin will act as an overflow weir that will release storm events greater than the 5 year storm and finally the emergency overflow weir will direct flow from the basin to the existing ditch along the west side of the property if the system becomes temporarily restricted for some reason. Please note that the "Actual Release Rate" shown in the chart below includes the direct discharge from the small fringe areas of the site that sheet drain off rather than going into the basin. This ensures that the total runoff from the site is effectively controlled. Add column for undetained area. This

Detention Chart

should be represented separate from the

	Predeveloped Combined	Postdeveloped Combined	Total Allowable Release	Aetual Release Rate		in release. Volume	This
Year	CFS	CFS	CFS	CFS	Feet	C.F.	bee
1	5.074	11.240	5.074	2.327	707.02	19682	
2	6.002	12.470	5.074	2.853	707.16	20954	
5	9.993	17.410	<u>√5.074</u>	4.943	707.84	27277	The
10	12.100	19.890	12.100	6.149	708.11	30083	rele
25	15.370	23.620	15.370	7.862	708.67	36554	yea
50	17.590	26.100	17.590	9.045	709.06	41270	year
100	18.710	27.340	18.710	9.621	709.13	42298	10 y

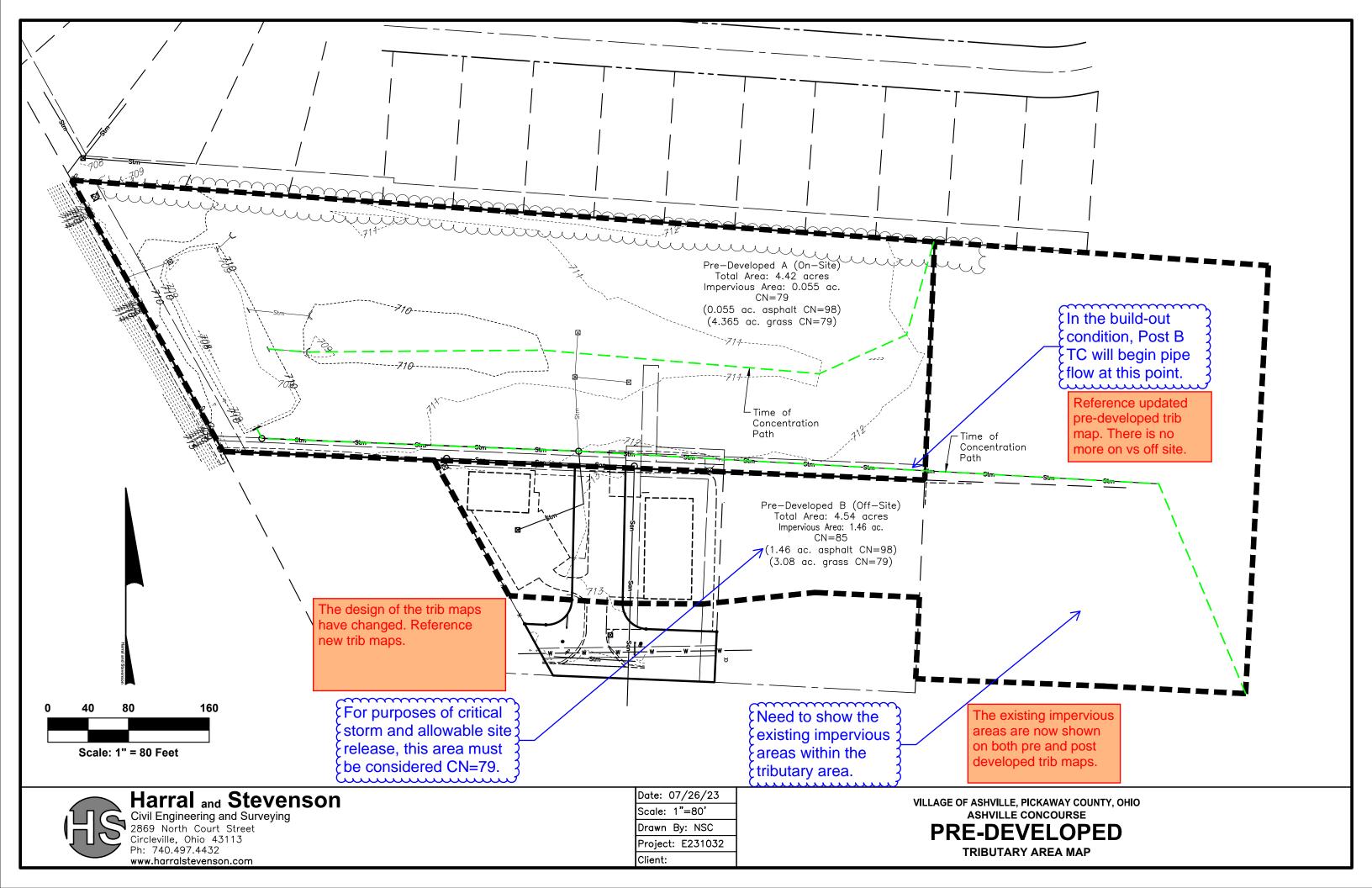
s column has n added.

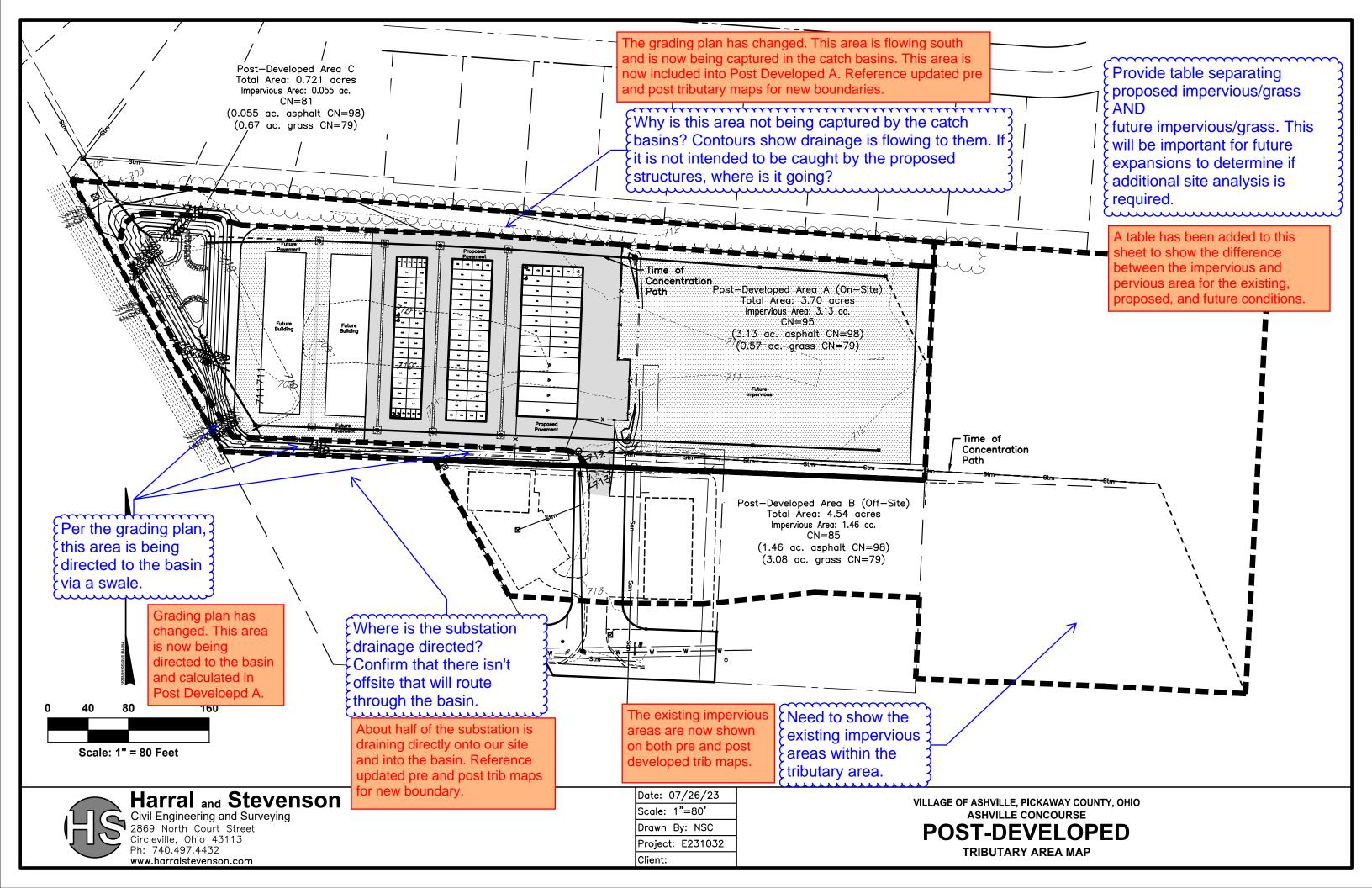
total allowable ease from the 10 r to the 100 r now shows the ear pre.

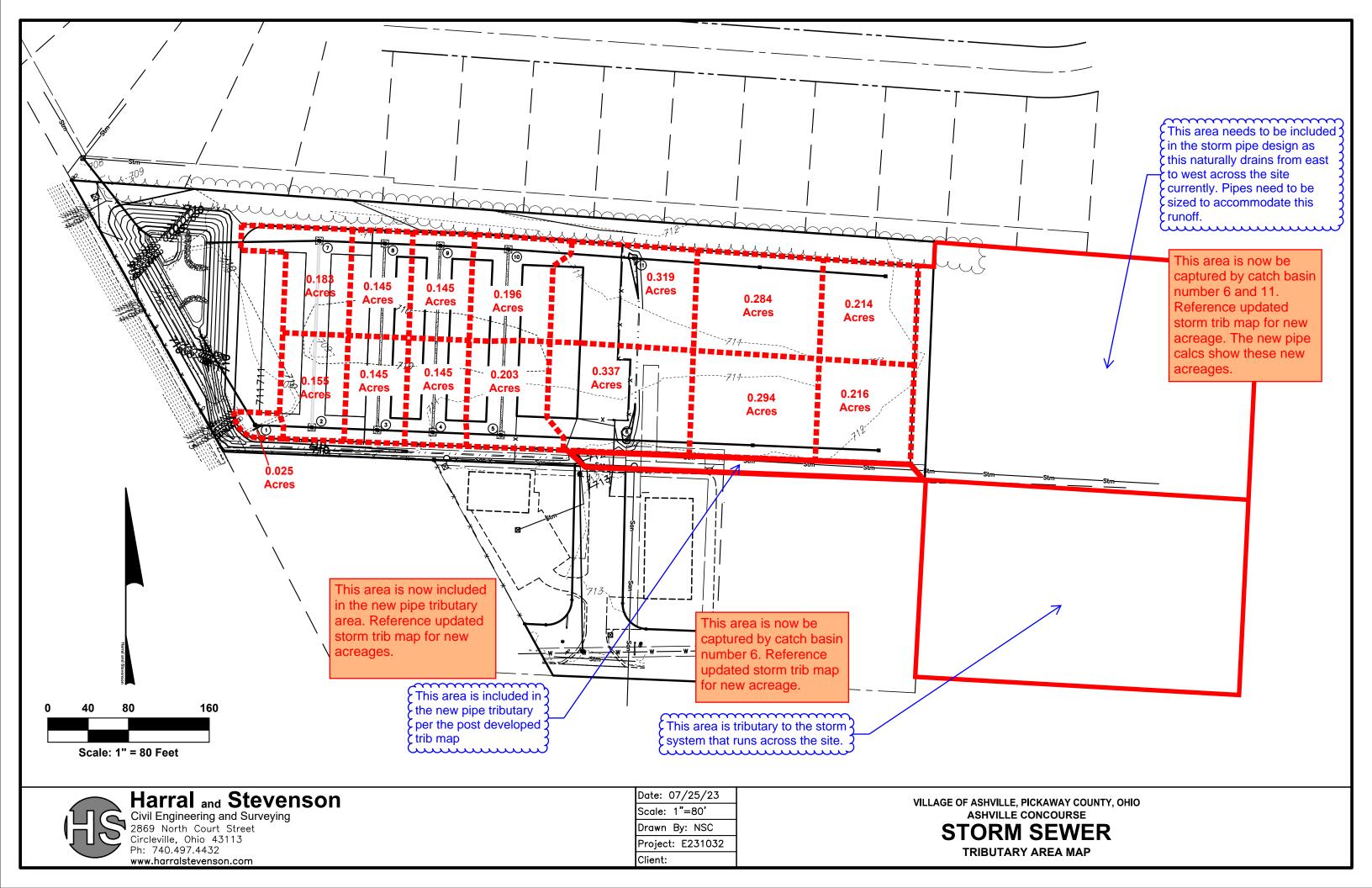
100 year post must be controlled by the

Water Quality

The project will disturb well over 1 acre warranting coverage under the state of 10 year pre. See City of Columbus design manual. construction stormwater. In accordance with the permit, the design prop basin as the post construction BMP. The WQv will be detained by the orifice in the outlet structure for ease of maintenance. A micropool and forebay are proposed with each contributing an additional 10% of the WQv for sediment storage. The WQv design was developed using the OEPA Compliance Worksheet which is included on the following pages.


Storm Sewer


The internal storm sewer is designed using a 2 year flow and 5 year hydraulic grade line check. As previously discussed, the vast majority of the site is graded to be tributary to one of the catch basins or other inlets. The storm sewer network is directed to discharge to one of two forebays within detention pond through one of two headwalls with rock channel protection to dissipate flow and reduce erosion. The storm sewer design calculations are shown on the computation sheet which is included herein.


The proposed detention pond will have two forebays to help collect sediment for ease of removal. Per the Ohio Rainwater Manual Section 2.6.3 Forebay(S) the forebays are to occupy 8%-25% of the normal pool area and shall have a depth of at least 3 feet. The area provided for both forebays is 1,674 C.F., which is roughly 10% of the Normal pool area of the Proposed Detention Pond (10,087 C.F.). Details of the Forebays can be found in the Plot Grade and Utility Plans.

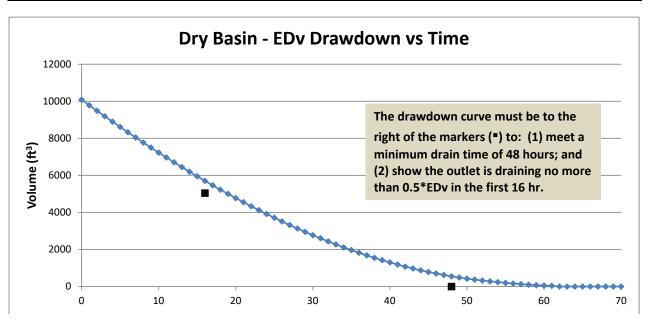
The forebays and micropools should be designed based on the EPA 2 general permit of 10% X WQ for each. The two forebays should be prorated in size based on the incoming tributary areas.

This paragraph has been included in the Water Quality section. Both forebays are now sized to their respective size based on the incoming tributary areas.

Dry Extended Detention Basin WQv Compliance Tool

version 3.1 2018-10-25

Project Summary Water quality for this site **Project Name: Ashville Concourse** should include entire Jubwatershed ID/Label: tributary area to the basin. Submitted by: The total drainage area has been 192,535 ft2 hed Drainage Area, A_{tolal} = 4.42 acres = increased to include d Impervious Area, A_{imp}= 138,739 ft2 3.19 acres = the entire tributary 0.72 **72** % perviousness fraction, i = 10,087 ft³ 0.23 ac-ft area. r Quality Volume, WQv = =


Step 1 - Soil Suitability		
Soil Series	CrA	HSG C

Step 2 - Dry ED Basin Volume Requirements	
Extended Detention Volume, EDv = Minimum Sediment Storage Volume, V _{sediment} = Minimum Forebay Volume, V _{forebay} = Minimum Permanent Micropool Volume, V _{micropool} =	1009 ft ³

tep 3 - Basin Stage-Storage Relationship	Elevation ft	Area ft²	Incremental Volume ft ³	Cumulative Volume ft ³
Bottom of Permanent Micropool =	702.00	422		
(include forebay area if below EDv)	703.00	705	557	557
	704.00	3,485	1,919	2,476
	705.00	4,795	4,123	6,599
	706.00	6,345	5,552	12,151
	707.00	8,295	7,298	19,449
	708.00	10,474	9,363	28,813
	709.00	12,837	11,635	40,448
	710.00	15,981	14,380	54,828

Step 4 - Outlet Elevations and Storage Volumes				
		1		
WQ Orifice Invert Elevation =	703.90			
Elevation of Top of EDv =	706.02			
Secondary Outlet Invert Elevation =	706.25			OKAY
WQ Treatment Volume Provided, V _{treatment} =	11,648	ft ³		
Treatment Vol Provided Relative to EDv, $V_{treatment}/EDv =$	1.15	=	115%	OKAY
Permanent Pool Volume Provided, PPv =	2,147			<u>-</u>
Forebay Volume Provided, V _{forebay} =	1,025	ft ³ =	1.02	
Is forebay volume below WQ outlet? (Yes or No)	Yes	=	102%	OKAY
Permanent Micropool Volume Provided, V _{micropool} =	1,122	ft ³		
Ratio $V_{micropool}$ Provided to $V_{micropool}$ Required =	1.11		111%	OKAY
Sediment Storage Volume Provided, V _{sediment} =	2,147	ft ³		
Ratio $V_{sediment}$ Provided to $V_{sediment}$ Required =	1.06	=	106%	OKAY
		-		

Step 5 - Outlet (Orifice) Sizing			
Maximum Hydraulic Head, Hmax =	2.12	ft	
Orifice Coefficient, C =	0.6		
Target (Minimum) Draw-down Time, $T_d =$	48	hr	
Target Average Discharge, Q _{avg} =	0.06	cfs	
Average Hydraulic Head, H _{avg} =	1.06	ft	
Estimated Orifice Area, A _{orifice} =	1.70	in ² =	0.012 ft ²
Estimated Orifice Diameter, D _{orifice} =	1.47	in =	0.12 ft
Design Orifice Diameter, D _{orifice} =	1.50	in =	0.13 ft
Design Orifice Area, A _{orifice} =	1.76	in ² =	0.012 ft ²
Time to Completely Drain EDv, T_d =	62	hr mu	ust be ≥ 48 hr OKAY
Volume Drained in First 16 hr =	4,383	ft³	
% of EDv =	43.4	% m	oust be <u><</u> 50% OKAY
	_	-	

Time (hr)

This should include the area to the east as shown on the tributary map.

Verify capacity of the system based on new area.

Noted. This area has increased and now captures the area to the east. Reference new storm trib map for the new area.

Harral and Stevenson Civil Engineering and Surveying www.harralstevenson.com

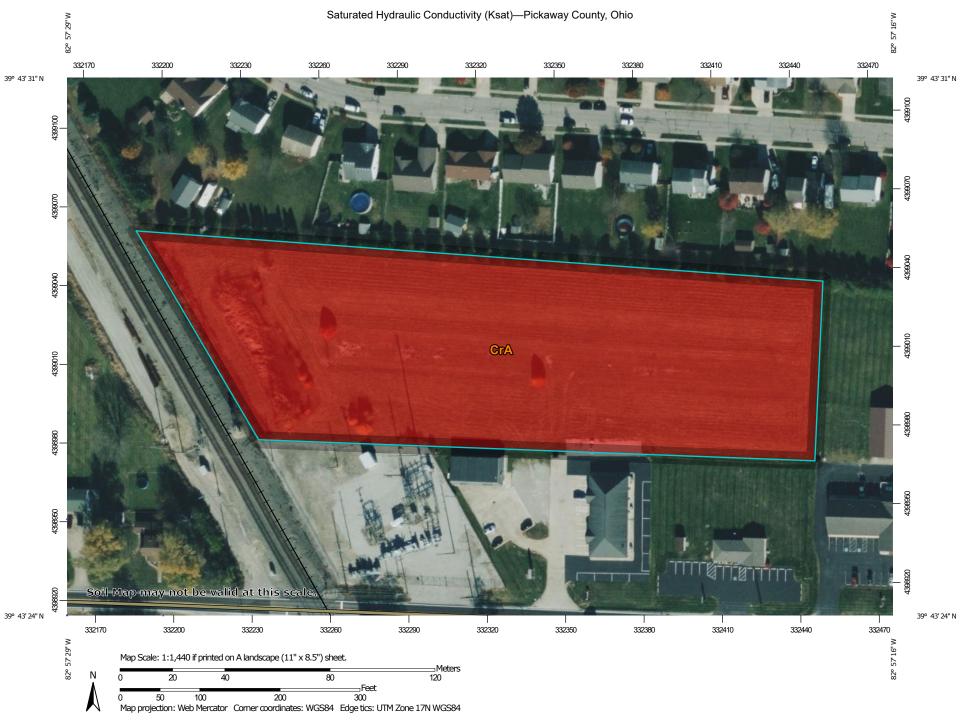
STORM SEWER COMPUTATION SHEET

Project: Goldtree Ventures, LLC

Job No.: **E231032**

By: NSC

Date: 07/26/23


	2 Year Destign Storm N= 0.013 Intensity Reference: Columbus Checked: CES			: CES	Revised:																	
			D <mark>r</mark> ain	age A	rea	Time								Cap.					5 YEA	R HYDRAUL	IC GRA	DE LINE
Structure		Trib.	Gumul.	С	Cumul. CA	Delta t (min.)	Sum t (min.)	(in/hr)	Des Q (CFS)	Length (ft.)	Dia. (in.)	Slope (%)	Velocity (ft./sec.)	Flowing	Out	ln	T.C.	Cover (ft.)	5 Yr. Rainfall Intensity	Discharge Q (CFS)	Slope (%)	5 Yr. HGL
6	472		0.337	0.90	0.303	0.00	10.00	3.81	1.156	125.00	15	0.35	3.12	3.832	706.46	706.71	709.55	1.84	4.63	1.404	0.05	707.46
5	347	0.203	0.540	0.90	0.486	0.67	10.67	3.70	1.798	67.50	15	0.35	3.12	3.832	705.92	706.02	710.32	3.15	4.52	2.197	0.12	706.92
4	280	0.145	0.685	0.90	0.617	0.36	11.03	3.70	2.281	55.00	15	0.40	3.34	4.097	705.58	705.68	710.32	3.49	4.52	2.787	0.19	706.58
3	225	0.145	0.830	0.90	0.747	0.27	11.30	3.70	2.764	65.00	15	0.45	3.54	4.345	705.26	705.36	710.32	3.81	4.52	3.376	0.27	706.26
2	160	0.155	0.985	0.90	0.887	0.31	11.61	3.58	3.174	56.07	15	0.55	3.91	4.804	704.87	704.97	710.32	4.20	4.4	3.901	0.36	705.87
1	104	0.025	1.010	0.90	0.909	0.24	11.85	3.58	3.254	103.67	18	0.30	3.26	5.769	704.31	704.56	710.32	4.51	4.4	4.000	0.14	705.51
HW1																704.00						704.00
		~~																				71
11			0.319	0.90	0.287	0.00	10.00	3.81	1.094	125.00	15	0.35	3.12	3.832	706.20	706.45	709.55	2.10	4.63	1.329	0.04	707.20
10	299		0.515	0.90	0.464	0.67	10.67	3.70	1.715	67.50	15	0.35	3.12	3.832	705.66	705.76	710.32	3.41	4.52	2.095	0.10	706.66
9	232	0.145	Q.660	0.90	0.594	0.36	11.03	3.70	2.198	55.00	15	0.40	3.34	4.097	705.33	705.43	710.32	3.74	4.52	2.685	0.17	706.33
8	177	0.145	0.805	0.90	0.725	0.27	11.30	3.70	2.681	65.00	15	0.45	3.54	4.345	705.01	705.11	710.32	4.06	4.52	3.275	0.26	706.01
7	112	0.183	0.988	0.90	0.889	0.31	11.61	3.58	3.183	111.68	15	0.55	3.91	4.804	704.61	704.71	710.32	4.46	4.4	3.912	0.37	705.61
HW2																704.00						704.00
			`																			/
				\																		
				,																		
				l								l					l	l		_		

This should include the area to the east as shown on the tributary map. Verify capacity of the system based on new area.

Noted. This area has increased and now captures the area to the east. Reference new storm trib map for the new area.

5-yr HGL should start with the elevation of the basin during the 5 year event, not the invert of the outlet pipe.

The start of the 5 year HGL has been updated to match the elevation of the basin at the 5 year event.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Rating Polygons

= 3.9788

Not rated or not available

Soil Rating Lines

-

= 3.9788

الوراعو

Not rated or not available

Soil Rating Points

= 3.9788

Not rated or not available

Water Features

Streams and Canals

Transportation

~

Interstate Highways

~

US Routes

Rails

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15.800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Pickaway County, Ohio Survey Area Data: Version 23, Sep 9, 2022

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Oct 8, 2020—Nov 7, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Saturated Hydraulic Conductivity (Ksat)

Map unit symbol	Map unit name	Rating (micrometers per second)	Acres in AOI	Percent of AOI
CrA	Crosby silt loam, Southern Ohio Till Plain, 0 to 2 percent slopes	3.9788	4.3	100.0%
Totals for Area of Intere	st	4.3	100.0%	

Description

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity is considered in the design of soil drainage systems and septic tank absorption fields.

For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

The numeric Ksat values have been grouped according to standard Ksat class limits.

Rating Options

Units of Measure: micrometers per second
Aggregation Method: Dominant Component
Component Percent Cutoff: None Specified

Tie-break Rule: Fastest Interpret Nulls as Zero: No

Layer Options (Horizon Aggregation Method): Depth Range (Weighted Average)

Top Depth: 6

Bottom Depth: 60

Units of Measure: Inches

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:15.800. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: Pickaway County, Ohio Survey Area Data: Version 23, Sep 9, 2022 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Not rated or not available Date(s) aerial images were photographed: Oct 8, 2020—Nov 7, 2020 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
CrA	Crosby silt loam, Southern Ohio Till Plain, 0 to 2 percent slopes	C/D	4.3	100.0%
Totals for Area of Intere	est	4.3	100.0%	

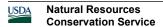
Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

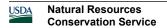
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

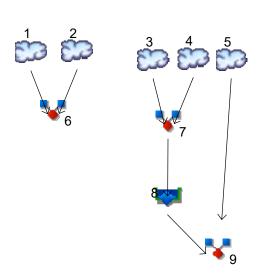
Tie-break Rule: Higher

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Watershed Model Schematic	1
Hydrograph Return Period Recap	2
1 - Year	
Summary Report	3
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Predeveloped A	
TR-55 Tc Worksheet	
Hydrograph No. 2, SCS Runoff, Predeveloped B	6
TR-55 Tc Worksheet	
Hydrograph No. 3, SCS Runoff, Postdeveloped A	
TR-55 Tc Worksheet	
Hydrograph No. 4, SCS Runoff, Postdeveloped B	
TR-55 Tc Worksheet	
Hydrograph No. 5, SCS Runoff, Postdeveloped C	
Hydrograph No. 6, Combine, Combined Predeveloped A&B	
Hydrograph No. 7, Combine, Post A and B Combined	
Hydrograph No. 8, Reservoir, Basin	
Pond Report - Detention Basin	
Hydrograph No. 9, Combine, Post Developed Outflow	
2 - Year Summary Report Hydrograph Reports Hydrograph No. 1, SCS Runoff, Predeveloped A Hydrograph No. 2, SCS Runoff, Predeveloped B Hydrograph No. 3, SCS Runoff, Postdeveloped A Hydrograph No. 4, SCS Runoff, Postdeveloped B Hydrograph No. 5, SCS Runoff, Postdeveloped C Hydrograph No. 6, Combine, Combined Predeveloped A&B Hydrograph No. 7, Combine, Post A and B Combined	. 19 . 20 . 21 . 22 . 23 . 24
Hydrograph No. 8, Reservoir, Basin	
Hydrograph No. 9, Combine, Post Developed Outflow	. 27
5 - Year	
Summary Report	
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Predeveloped A	
Hydrograph No. 2, SCS Runoff, Predeveloped B	
Hydrograph No. 3, SCS Runoff, Postdeveloped A	
Hydrograph No. 4, SCS Runoff, Postdeveloped B	
Hydrograph No. 5, SCS Runoff, Postdeveloped C	
Hydrograph No. 6, Combine, Combined Predeveloped A&B	. 34
Hydrograph No. 7, Combine, Post A and B Combined	
Hydrograph No. 8, Reservoir, Basin	
Hydrograph No. 9, Combine, Post Developed Outflow	. 3/


Contents continued...

	Summary Report	
	Hydrograph Reports	. 39
	Hydrograph No. 1, SCS Runoff, Predeveloped A	. 39
	Hydrograph No. 2, SCS Runoff, Predeveloped B	40
	Hydrograph No. 3, SCS Runoff, Postdeveloped A	
	Hydrograph No. 4, SCS Runoff, Postdeveloped B	
	Hydrograph No. 5, SCS Runoff, Postdeveloped C	
	Hydrograph No. 6, Combine, Combined Predeveloped A&B	
	Hydrograph No. 7, Combine, Post A and B Combined	
	Hydrograph No. 8, Reservoir, Basin	
	Hydrograph No. 9, Combine, Post Developed Outflow	
25	- Year	
	Summary Report	48
	Hydrograph Reports	
	Hydrograph No. 1, SCS Runoff, Predeveloped A	
	Hydrograph No. 2, SCS Runoff, Predeveloped B	
	Hydrograph No. 3, SCS Runoff, Postdeveloped A	
	Hydrograph No. 4, SCS Runoff, Postdeveloped B	
	Hydrograph No. 5, SCS Runoff, Postdeveloped C	
	Hydrograph No. 6, Combine, Combined Predeveloped A&B	
	Hydrograph No. 7, Combine, Post A and B Combined	. 55
	Hydrograph No. 8, Reservoir, Basin	
	Hydrograph No. 9, Combine, Post Developed Outflow	
	riyarograpirita. o, combino, r cot Bovolopou cumow	. 01
50	- Year	
	Summary Report	. 58
	Hydrograph Reports	
	Hydrograph No. 1, SCS Runoff, Predeveloped A	
	Hydrograph No. 2, SCS Runoff, Predeveloped B	
	Hydrograph No. 3, SCS Runoff, Postdeveloped A	
	Hydrograph No. 4, SCS Runoff, Postdeveloped B	
	Hydrograph No. 5, SCS Runoff, Postdeveloped C	
	Hydrograph No. 6, Combine, Combined Predeveloped A&B	
	Hydrograph No. 7, Combine, Post A and B Combined	
	Hydrograph No. 8, Reservoir, Basin	
	Hydrograph No. 9, Combine, Post Developed Outflow	
10	0 - Year	
	Summary Report	. 68
	Hydrograph Reports	
	Hydrograph No. 1, SCS Runoff, Predeveloped A	
	Hydrograph No. 2, SCS Runoff, Predeveloped B	
	Hydrograph No. 3, SCS Runoff, Postdeveloped A	
	Hydrograph No. 4, SCS Runoff, Postdeveloped B	. 72
	Hydrograph No. 5, SCS Runoff, Postdeveloped C	
	Hydrograph No. 6, Combine, Combined Predeveloped A&B	
	Hydrograph No. 7, Combine, Post A and B Combined	
	Hydrograph No. 8, Reservoir, Basin	
	Hydrograph No. 9. Combine Post Developed Outflow	77

\sim		4.5	i
Con	tents	contin	uea

IDF Report	. 78

Watershed Model Schematic

Legend

<u>Hyd.</u>	<u>Origin</u>	<u>Description</u>
1	SCS Runoff	Predeveloped A
2	SCS Runoff	Predeveloped B
3	SCS Runoff	Postdeveloped A
4	SCS Runoff	Postdeveloped B
5	SCS Runoff	Postdeveloped C
6	Combine	Combined Predeveloped A&B
7	Combine	Post A and B Combined
8	Reservoir	Basin
9	Combine	Post Developed Outflow

Project: E231032 Hydro.gpw

Wednesday, 07 / 26 / 2023

Hydrograph Return Period Recap

-	Hydrograph Inflow hyd(s)				Hydrograph						
lo.	type (origin)	nya(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		2.445	2.959		5.200	6.399	8.262	9.543	10.19	Predeveloped A
2	SCS Runoff		2.912	3.384		5.358	6.379	7.939	8.992	9.521	Predeveloped B
3	SCS Runoff		10.41	11.47		15.69	17.78	20.90	22.97	24.00	Postdeveloped A
4	SCS Runoff		2.912	3.384		5.358	6.379	7.939	8.992	9.521	Postdeveloped B
5	SCS Runoff		0.921	1.089		1.802	2.180	2.775	3.179	3.383	Postdeveloped C
6	Combine	1, 2,	5.074	6.002		9.993	12.10	15.37	17.59	18.71	Combined Predeveloped A&B
7	Combine	3, 4,	11.24	12.47		17.41	19.89	23.62	26.10	27.34	Post A and B Combined
3	Reservoir	7	2.265	2.779		4.820	5.999	6.545	7.776	9.392	Basin
9	Combine	5, 8	2.327	2.853		4.943	6.149	7.862	9.045	9.621	Post Developed Outflow

Proj. file: E231032 Hydro.gpw

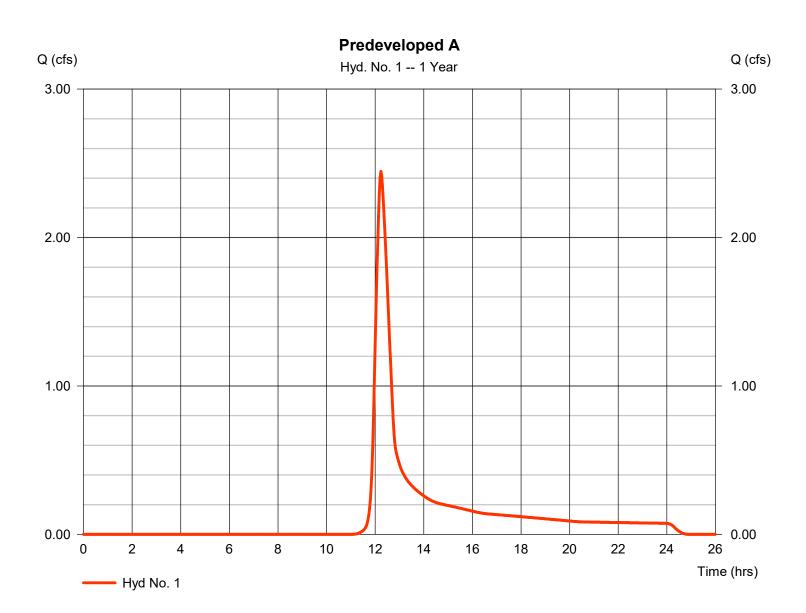
Wednesday, 07 / 26 / 2023

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

yd. Hydrograp o. type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
SCS Runof	2.445	2	734	11,476				Predeveloped A
SCS Runof	2.912	2	744	16,832				Predeveloped B
SCS Runof	10.41	2	716	22,290				Postdeveloped A
SCS Runof	2.912	2	744	16,832				Postdeveloped B
SCS Runof	0.921	2	718	1,846				Postdeveloped C
6 Combine	5.074	2	740	28,308	1, 2,			Combined Predeveloped A&B
7 Combine	11.24	2	716	39,122	3, 4,			Post A and B Combined
Reservoir	2.265	2	772	36,822	7	707.02	19,682	Basin
E231032 Hyd								ny, 07 / 26 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

Hyd. No. 1

Predeveloped A

Hydrograph type = SCS Runoff Peak discharge = 2.445 cfsStorm frequency = 1 yrsTime to peak $= 12.23 \, hrs$ = 11,476 cuft Time interval = 2 min Hyd. volume Drainage area = 4.420 acCurve number = 79* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 30.90 \, \text{min}$ = TR55 Total precip. = 2.30 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

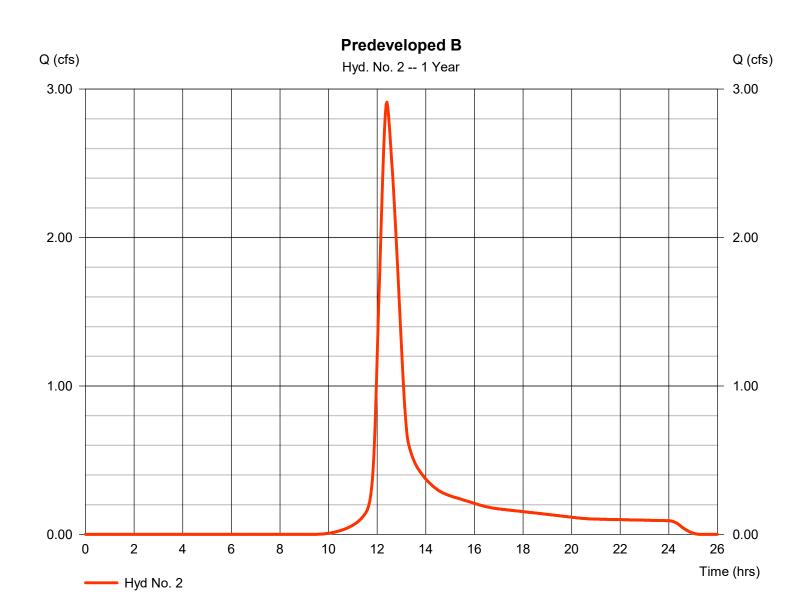
^{*} Composite (Area/CN) = $[(0.055 \times 98) + (4.365 \times 79)] / 4.420$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1Predeveloped A

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.200 = 150.0 = 2.50 = 1.33		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 22.72	+	0.00	+	0.00	=	22.72
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 536.00 = 0.56 = Unpaved =1.21	d	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 7.40	+	0.00	+	0.00	=	7.40
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.79 = 3.14 = 0.09 = 0.023 =0.79		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015		
Flow length (ft)	({0})38.0		0.0		0.0		
Travel Time (min)	= 0.80	+	0.00	+	0.00	=	0.80

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

Hyd. No. 2

Predeveloped B

Hydrograph type = SCS Runoff Peak discharge = 2.912 cfsStorm frequency = 1 yrsTime to peak $= 12.40 \, hrs$ Time interval = 2 min Hyd. volume = 16,832 cuft Drainage area = 4.540 acCurve number = 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 49.90 min = TR55 Total precip. = 2.30 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

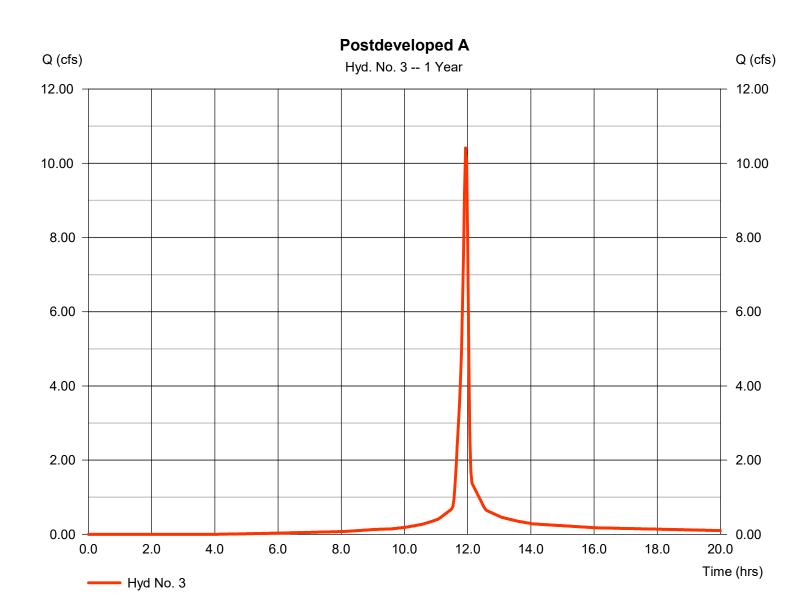
^{*} Composite (Area/CN) = $[(1.460 \times 98) + (3.080 \times 79)] / 4.540$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2Predeveloped B

<u>Description</u>	<u>A</u>		<u>B</u>		<u>c</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.200 = 150.0 = 2.50 = 0.67		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 29.89	+	0.00	+	0.00	=	29.89
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 75.00 = 0.67 = Unpaved =1.32	I	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.95	+	0.00	+	0.00	=	0.95
Travel Time (min) Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.95 = 0.79 = 3.14 = 0.09 = 0.023 =0.79	+	0.00 0.00 0.00 0.00 0.015 0.00	+	0.00 0.00 0.00 0.00 0.015	=	0.95
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value	= 0.79 = 3.14 = 0.09 = 0.023	+	0.00 0.00 0.00 0.015	+	0.00 0.00 0.00 0.015	=	0.95
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.79 = 3.14 = 0.09 = 0.023 =0.79	+	0.00 0.00 0.00 0.015 0.00	+	0.00 0.00 0.00 0.015	=	0.95 19.04

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

Hyd. No. 3

Postdeveloped A

Hydrograph type = SCS Runoff Peak discharge = 10.41 cfsStorm frequency = 1 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 22.290 cuft Drainage area Curve number = 3.700 ac= 95* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.30 min = TR55 Total precip. = 2.30 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(3.130 \times 98) + (0.570 \times 79)] / 3.700$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

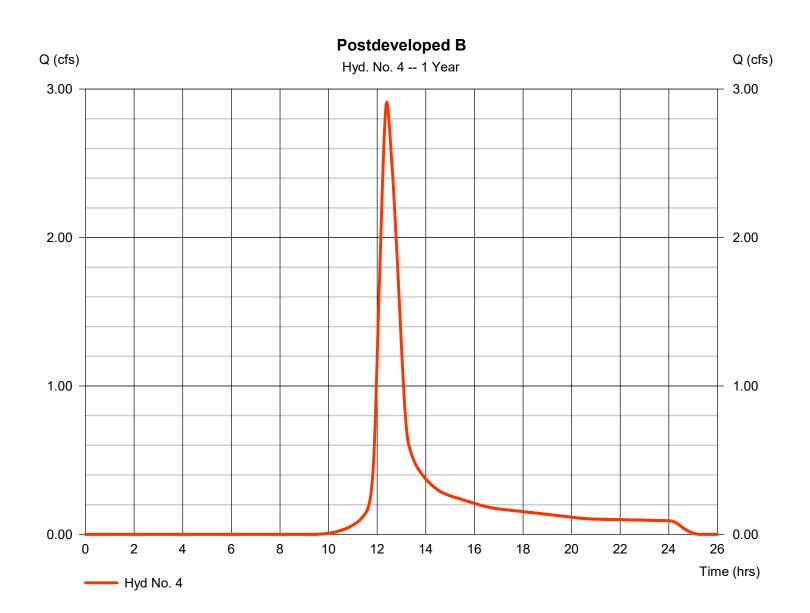
Postdeveloped A

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.011 = 102.0 = 2.50 = 0.49		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 2.44	+	0.00	+	0.00	=	2.44
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 0.00 = 0.00 = Unpaved =0.00	I	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%)	= 0.79 = 3.14		0.00 0.00		0.00 0.00		
Manning's n-value Velocity (ft/s)	= 0.45 = 0.010 =3.95		0.00 0.015 0.00		0.00 0.015 0.00		
	= 0.010		0.015		0.015		
Velocity (ft/s)	= 0.010 =3.95	+	0.015	+	0.015	=	2.84

Storm design sheets call for 10 min tc.

This time of concentration has chnaged because of the new pre and post developed trib maps.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

Hyd. No. 4

Postdeveloped B

Hydrograph type = SCS Runoff Peak discharge = 2.912 cfsStorm frequency = 1 yrsTime to peak $= 12.40 \, hrs$ Time interval = 2 min Hyd. volume = 16,832 cuft Drainage area = 4.540 acCurve number = 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 49.90 min = TR55 Total precip. = 2.30 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(1.460 \times 98) + (3.080 \times 79)] / 4.540$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

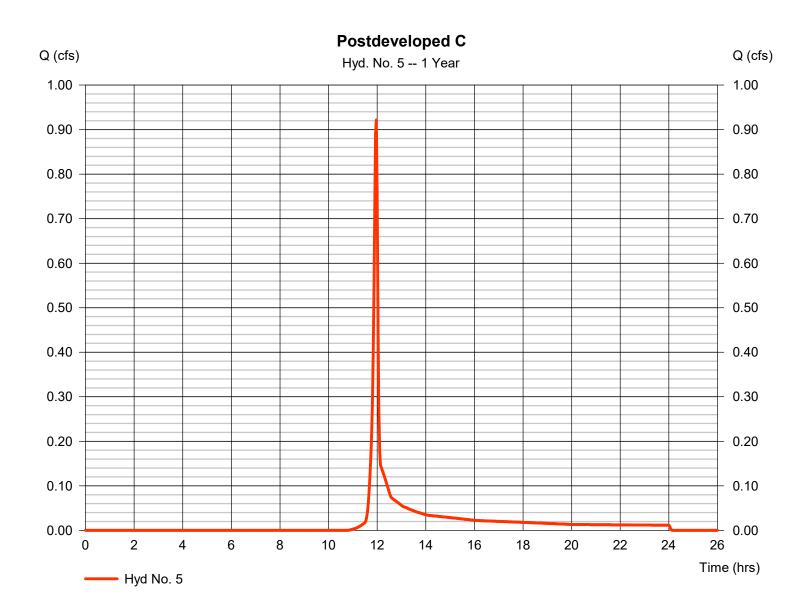
Postdeveloped B

Sheet Flow Manning's n-value = 0.200 0.011 0.011 0.011 Flow length (ft) = 150.0 0.0 0.0 0.00	<u>Description</u>	<u>A</u>	<u>B</u>		<u>C</u>		<u>Totals</u>
Flow length (ft)	Sheet Flow						
Two-year 24-hr precip. (in)	<u> </u>						
Land slope (%) = 0.67 0.00 0.00 Travel Time (min) = 29.89 + 0.00 + 0.00 = 29.89 Shallow Concentrated Flow Flow length (ft) = 75.00 0.00 0.00 0.00 Watercourse slope (%) = 0.67 0.00 0.00 0.00 Surface description = Unpaved Paved Paved Paved Average velocity (ft/s) = 1.32 0.00 0.00 Travel Time (min) = 0.95 + 0.00 + 0.00 = 0.95 Channel Flow X sectional flow area (sqft) = 0.79 0.00 0.00 Wetted perimeter (ft) = 3.14 0.00 0.00 Channel slope (%) = 0.09 0.00 0.00 Manning's n-value = 0.023 0.015 0.015 Velocity (ft/s) = 0.79 0.00 0.00 Flow length (ft) ({0})901.0 0.0 0.0 Travel Time (min) = 19.04 + 0.00 + 0.00 = 19.04	3 ()						
Travel Time (min) = 29.89 + 0.00 + 0.00 = 29.89 Shallow Concentrated Flow Flow length (ft) = 75.00 0.00 0.00 Watercourse slope (%) = 0.67 0.00 0.00 Surface description = Unpaved Paved Paved Average velocity (ft/s) = 1.32 0.00 0.00 Travel Time (min) = 0.95 + 0.00 + 0.00 = 0.95 Channel Flow X sectional flow area (sqft) = 0.79 0.00 0.00 Wetted perimeter (ft) = 3.14 0.00 0.00 Channel slope (%) = 0.09 0.00 0.00 Manning's n-value = 0.023 0.015 0.015 Velocity (ft/s) = 0.79 0.00 0.00 Flow length (ft) ({0})901.0 0.0 0.0 Travel Time (min) = 19.04 + 0.00 + 0.00 = 19.04	• • • • • •						
Shallow Concentrated Flow Flow length (ft) = 75.00 0.00 0.00 Watercourse slope (%) = 0.67 0.00 0.00 Surface description = Unpaved Paved Paved Average velocity (ft/s) = 1.32 0.00 0.00 Travel Time (min) = 0.95 + 0.00 + 0.00 = 0.95 Channel Flow X sectional flow area (sqft) = 0.79 0.00 0.00 Wetted perimeter (ft) = 3.14 0.00 0.00 Channel slope (%) = 0.09 0.00 0.00 Manning's n-value = 0.023 0.015 0.015 Velocity (ft/s) = 0.79 0.00 0.00 Flow length (ft) ({0})901.0 0.0 0.0 Travel Time (min) = 19.04 + 0.00 + 0.00 = 19.04	Land slope (%)	= 0.67	0.00		0.00		
Flow length (ft)	Travel Time (min)	= 29.89	+ 0.00	+	0.00	=	29.89
Watercourse slope (%) = 0.67 0.00 0.00 Surface description = Unpaved Paved Paved Average velocity (ft/s) = 1.32 0.00 0.00 Travel Time (min) = 0.95 + 0.00 + 0.00 = 0.95 Channel Flow X sectional flow area (sqft) = 0.79 0.00 0.00 0.00 Channel slope (%) = 0.09 0.00 0.00 Manning's n-value = 0.023 0.015 0.00 0.00 Velocity (ft/s) = 0.79 0.00 Flow length (ft) ({0.00} 0.00 -0.00 Travel Time (min) = 19.04 + 0.00 + 0.00 = 19.04	Shallow Concentrated Flow						
Surface description = Unpaved Average velocity (ft/s) Paved 0.00 Paved 0.00 Travel Time (min) = 0.95 + 0.00 + 0.00 = 0.95 Channel Flow X sectional flow area (sqft) = 0.79 0.00 0.00 0.00 Wetted perimeter (ft) = 3.14 0.00 0.00 0.00 Channel slope (%) = 0.09 0.00 0.00 0.00 Manning's n-value = 0.023 0.015 0.015 0.015 Velocity (ft/s) = 0.79 0.00 0.00 0.00 Flow length (ft) ({0})901.0 0.0 0.0 = 19.04 Travel Time (min) = 19.04 + 0.00 + 0.00 = 19.04	Flow length (ft)	= 75.00	0.00		0.00		
Average velocity (ft/s) =1.32 0.00 0.00 Travel Time (min) = 0.95 + 0.00 + 0.00 = 0.95 Channel Flow X sectional flow area (sqft) = 0.79 0.00 0.00 Wetted perimeter (ft) = 3.14 0.00 0.00 Channel slope (%) = 0.09 0.00 0.00 Manning's n-value = 0.023 0.015 0.015 Velocity (ft/s) =0.79 Flow length (ft) ({0})901.0 0.0 0.0 Travel Time (min) = 19.04 + 0.00 + 0.00 = 19.04	Watercourse slope (%)	= 0.67	0.00		0.00		
Average velocity (ft/s) =1.32 0.00 0.00 Travel Time (min) = 0.95 + 0.00 + 0.00 = 0.95 Channel Flow X sectional flow area (sqft) = 0.79 0.00 0.00 Wetted perimeter (ft) = 3.14 0.00 0.00 Channel slope (%) = 0.09 0.00 0.00 Manning's n-value = 0.023 0.015 0.015 Velocity (ft/s) =0.79 Flow length (ft) ({0})901.0 0.0 0.0 Travel Time (min) = 19.04 + 0.00 + 0.00 = 19.04	Surface description	= Unpaved	Paved		Paved		
Channel Flow X sectional flow area (sqft)		=1.32	0.00		0.00		
X sectional flow area (sqft) = 0.79							
Wetted perimeter (ft) = 3.14	Travel Time (min)	= 0.95	+ 0.00	+	0.00	=	0.95
Channel slope (%) = 0.09	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	= 0.95	+ 0.00	+	0.00	=	0.95
Manning's n-value = 0.023	Channel Flow		······	+	~~~	=	0.95
Velocity (ft/s) =0.79 0.00 Flow length (ft) ({0})901.0 0.0 0.0 Travel Time (min) = 19.04 + 0.00 + 0.00 = 19.04	Channel Flow X sectional flow area (sqft)	= 0.79	0.00	+	0.00	- -	0.95
0.00 Flow length (ft) ({0})901.0 0.0 0.0 Travel Time (min) = 19.04 + 0.00 + 0.00 = 19.04	Channel Flow X sectional flow area (sqft) Wetted perimeter (ft)	= 0.79 = 3.14	0.00 0.00	+	0.00 0.00	=	0.95
Flow length (ft) ({0})901.0 0.0 0.0 Travel Time (min) = 19.04 + 0.00 + 0.00 = 19.04	Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%)	= 0.79 = 3.14 = 0.09	0.00 0.00 0.00	+	0.00 0.00 0.00		0.95
Flow length (ft) ({0})901.0 0.0 0.0 Travel Time (min) = 19.04 + 0.00 + 0.00 = 19.04	Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value	= 0.79 = 3.14 = 0.09 = 0.023	0.00 0.00 0.00	+	0.00 0.00 0.00	=	0.95
Travel Time (min) = 19.04 + 0.00 + 0.00 = 19.04	Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value	= 0.79 = 3.14 = 0.09 = 0.023	0.00 0.00 0.00 0.015	+	0.00 0.00 0.00 0.00 0.015	=	0.95
Travel Time (min) = 19.04 + 0.00 + 0.00 = 19.04	Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value	= 0.79 = 3.14 = 0.09 = 0.023	0.00 0.00 0.00 0.015	+	0.00 0.00 0.00 0.00 0.015	=	0.95
	Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.79 = 3.14 = 0.09 = 0.023 =0.79	0.00 0.00 0.00 0.015 0.00	+	0.00 0.00 0.00 0.015	=	0.95
Total Travel Time To	Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.79 = 3.14 = 0.09 = 0.023 =0.79	0.00 0.00 0.00 0.015 0.00	+	0.00 0.00 0.00 0.015	=	0.95
Total Travel Time, Tc	Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 0.79 = 3.14 = 0.09 = 0.023 =0.79	0.00 0.00 0.00 0.015 0.00	+	0.00 0.00 0.00 0.015 0.00	•••	

This will be pipe flow See post trib map comments

The pre and post developed trib maps have changed.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

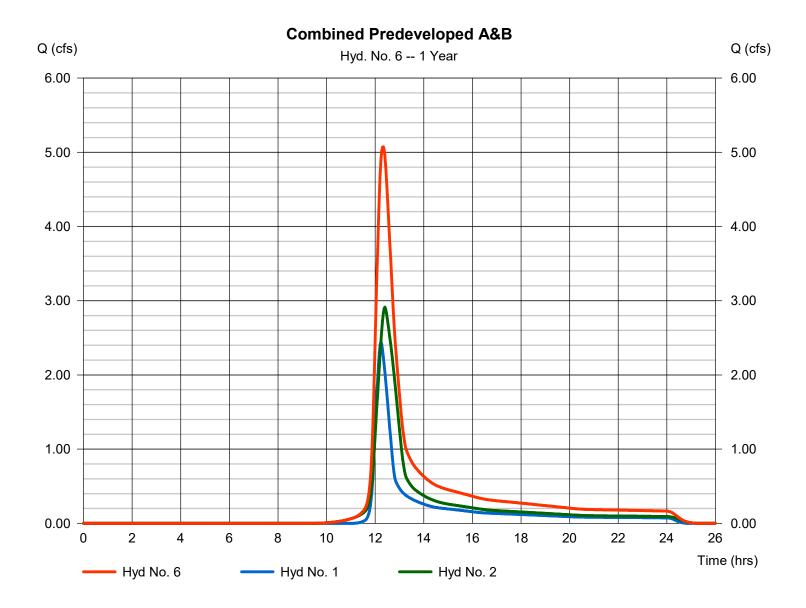

Wednesday, 07 / 26 / 2023

Hyd. No. 5

Postdeveloped C

Hydrograph type = SCS Runoff Peak discharge = 0.921 cfsStorm frequency = 1 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 1,846 cuft Curve number Drainage area = 0.720 ac= 80* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.00 min = User Total precip. = 2.30 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(0.050 \times 98) + (0.670 \times 79)] / 0.720$

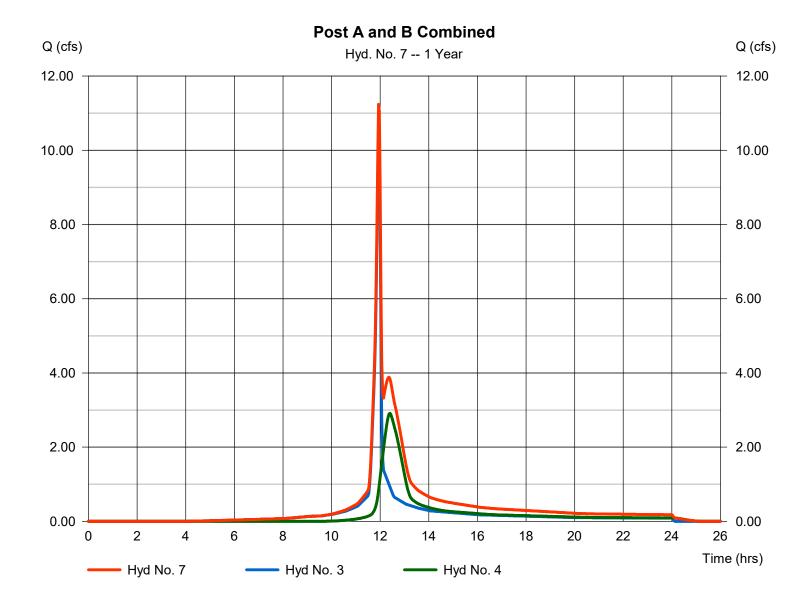

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Hyd. No. 6

Combined Predeveloped A&B

Hydrograph type = Combine Peak discharge = 5.074 cfsStorm frequency = 1 yrsTime to peak $= 12.33 \, hrs$ Time interval = 2 min Hyd. volume = 28,308 cuft Inflow hyds. = 1, 2 Contrib. drain. area = 8.960 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

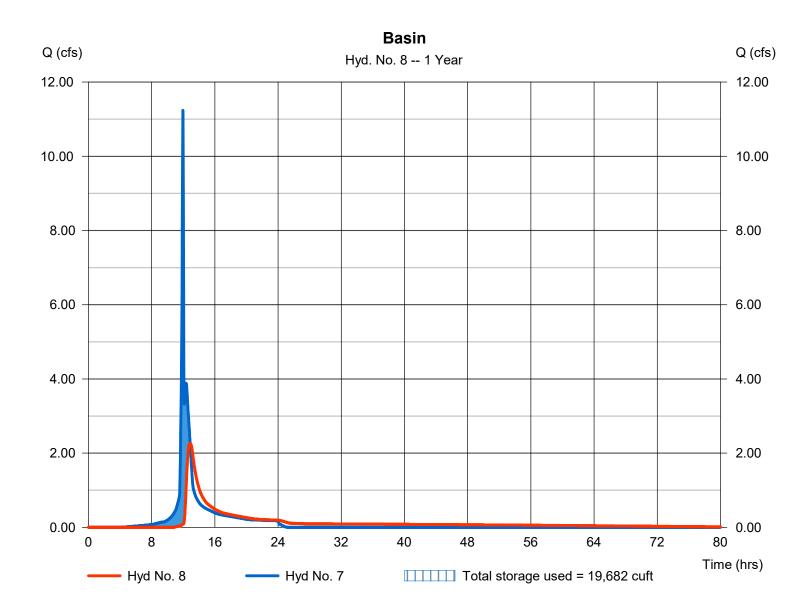
Wednesday, 07 / 26 / 2023

Hyd. No. 7

Post A and B Combined

= 11.24 cfsHydrograph type = Combine Peak discharge Storm frequency Time to peak = 1 yrs $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 39,122 cuft Inflow hyds. = 3, 4 Contrib. drain. area = 8.240 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

Hyd. No. 8

Basin

Hydrograph type Peak discharge = 2.265 cfs= Reservoir Storm frequency = 1 yrsTime to peak $= 12.87 \, hrs$ Time interval = 2 min Hyd. volume = 36,822 cuft Inflow hyd. No. = 7 - Post A and B Combined Max. Elevation = 707.02 ft= 19,682 cuft Reservoir name = Detention Basin Max. Storage

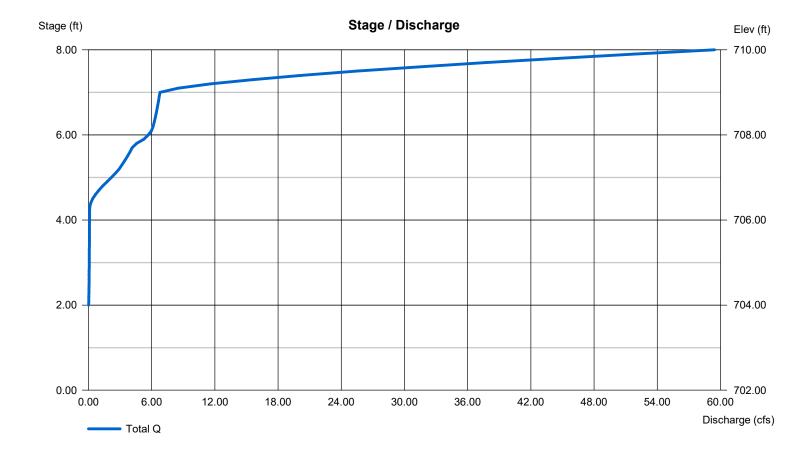
Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Pond No. 1 - Detention Basin

Pond Data

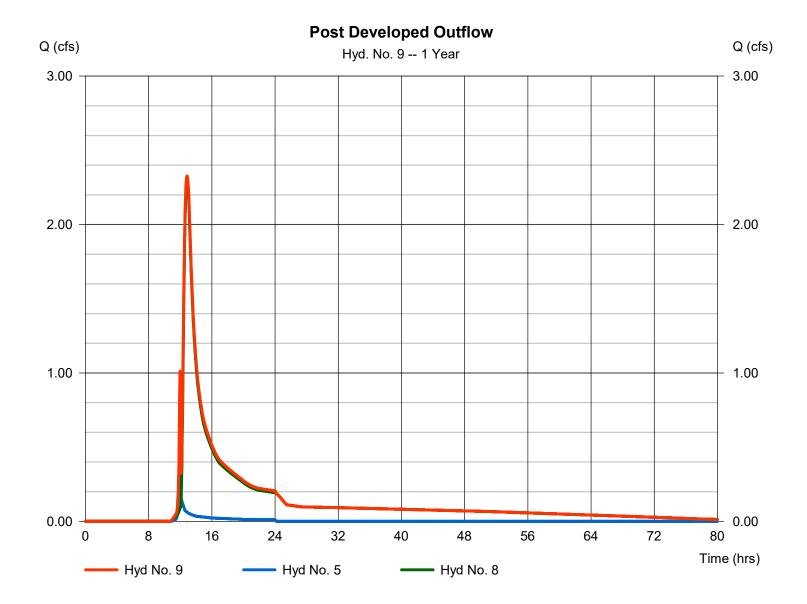

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 702.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	702.00	422	0	0
1.00	703.00	705	557	557
2.00	704.00	3,485	1,919	2,476
3.00	705.00	4,795	4,122	6,599
4.00	706.00	6,345	5,551	12,150
5.00	707.00	8,295	7,298	19,448
6.00	708.00	10,474	9,362	28,810
7.00	709.00	12,837	11,634	40,444
8.00	710.00	15,981	14,379	54,823

Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] 8.00 0.00 = 12.001.50 12.00 0.00 = 20.000.00 Rise (in) Crest Len (ft) Span (in) = 12.001.50 12.00 0.00 Crest El. (ft) = 709.00 707.75 0.00 0.00 = 1 0 Weir Coeff. = 2.602.60 3.33 3.33 No. Barrels 1 1 Weir Type Invert El. (ft) = 703.45703.90 706.25 0.00 = Broad **Broad** = 90.00 0.00 0.00 0.00 Multi-Stage Yes No No Length (ft) = No = 0.500.00 0.00 Slope (%) n/a N-Value = .013 .013 .013 n/a Orifice Coeff. = 0.660.66 0.66 0.66 Exfil.(in/hr) = 0.000 (by Wet area) = 0.00 = n/a Multi-Stage Yes Yes No TW Elev. (ft)

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Hyd. No. 9

Post Developed Outflow

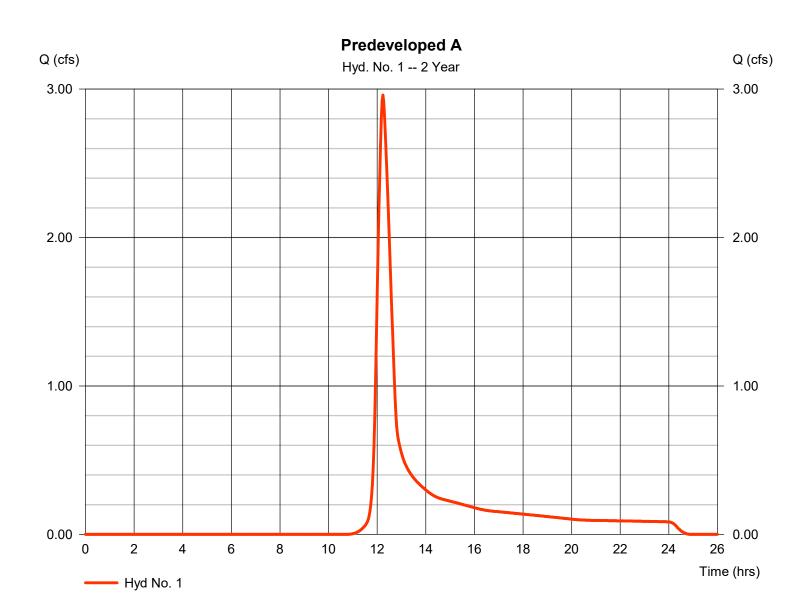
= 2.327 cfsHydrograph type = Combine Peak discharge Time to peak Storm frequency = 1 yrs $= 12.87 \, hrs$ Time interval = 2 min Hyd. volume = 38,668 cuft Inflow hyds. = 5,8 Contrib. drain. area = 0.720 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	2.959	2	734	13,604				Predeveloped A
2	SCS Runoff	3.384	2	744	19,421				Predeveloped B
3	SCS Runoff	11.47	2	716	24,720				Postdeveloped A
4	SCS Runoff	3.384	2	744	19,421				Postdeveloped B
5	SCS Runoff	1.089	2	718	2,178				Postdeveloped C
6	Combine	6.002	2	738	33,025	1, 2,			Combined Predeveloped A&B
7	Combine	12.47	2	716	44,142	3, 4,			Post A and B Combined
8	Reservoir	2.779	2	768	41,842	7	707.16	20,954	Basin
E2:	31032 Hydro.	gpw			Return F	Period: 2 Ye	ear	Wednesda	y, 07 / 26 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

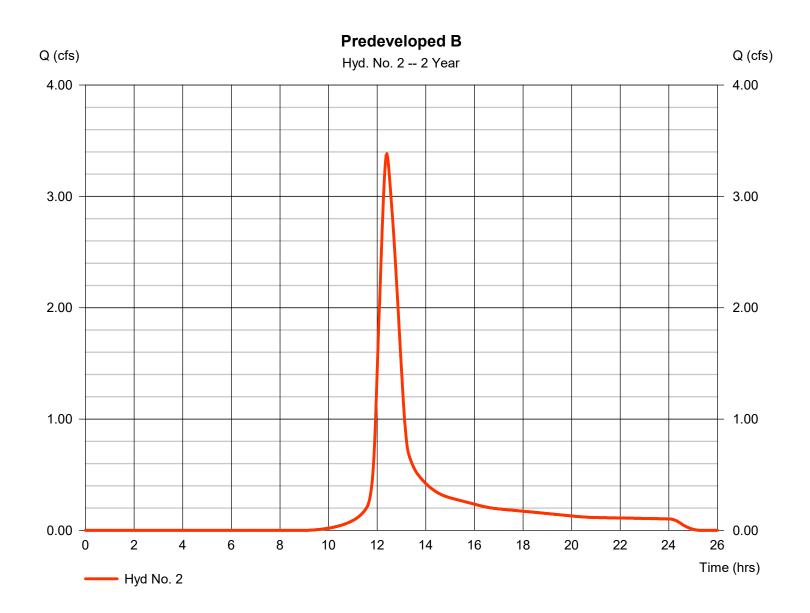
Hyd. No. 1

Predeveloped A

Hydrograph type = SCS Runoff Peak discharge = 2.959 cfsStorm frequency = 2 yrsTime to peak $= 12.23 \, hrs$ Time interval = 2 min Hyd. volume = 13.604 cuft = 79* Drainage area = 4.420 acCurve number Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 30.90 \, \text{min}$ = TR55 Total precip. = 2.50 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(0.055 x 98) + (4.365 x 79)] / 4.420

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

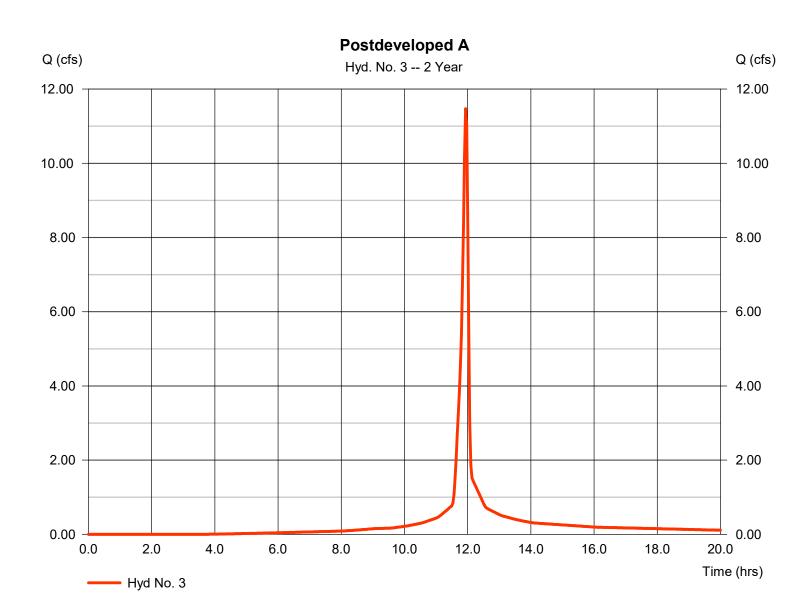
Hyd. No. 2

Predeveloped B

Hydrograph type = SCS Runoff Peak discharge = 3.384 cfsStorm frequency = 2 yrsTime to peak $= 12.40 \, hrs$ Time interval = 2 min Hyd. volume = 19.421 cuft Curve number Drainage area = 4.540 ac= 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 49.90 min = TR55 Total precip. = 2.50 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(1.460 \times 98) + (3.080 \times 79)] / 4.540$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

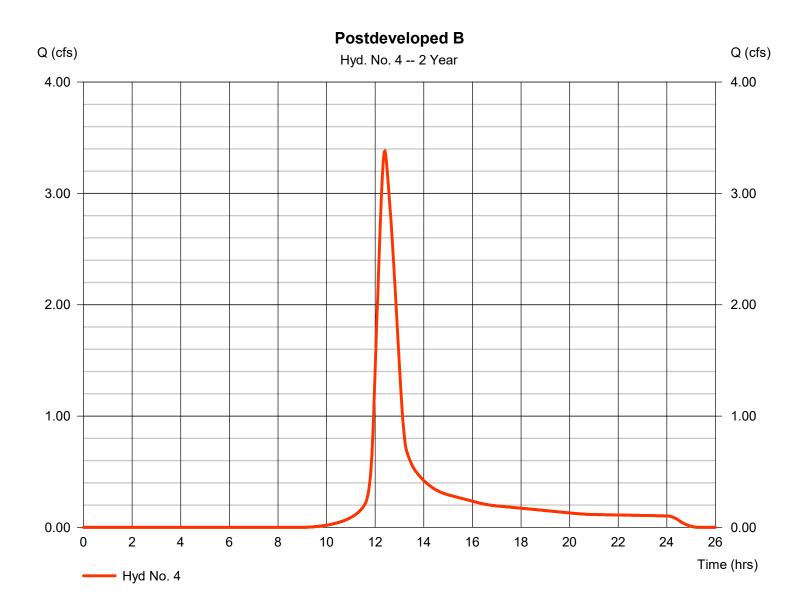
Hyd. No. 3

Postdeveloped A

Hydrograph type = SCS Runoff Peak discharge = 11.47 cfsStorm frequency = 2 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 24.720 cuftDrainage area Curve number = 3.700 ac= 95* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.30 min = TR55 Total precip. = 2.50 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(3.130 \times 98) + (0.570 \times 79)] / 3.700$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

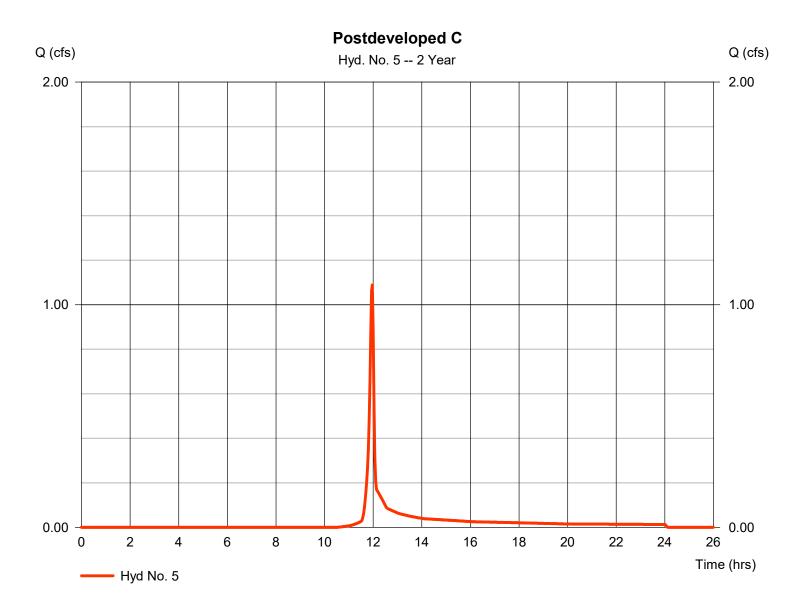
Hyd. No. 4

Postdeveloped B

Hydrograph type = SCS Runoff Peak discharge = 3.384 cfsStorm frequency = 2 yrsTime to peak $= 12.40 \, hrs$ Time interval = 2 min Hyd. volume = 19.421 cuft Curve number Drainage area = 4.540 ac= 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 49.90 min = TR55 Total precip. = 2.50 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(1.460 x 98) + (3.080 x 79)] / 4.540

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

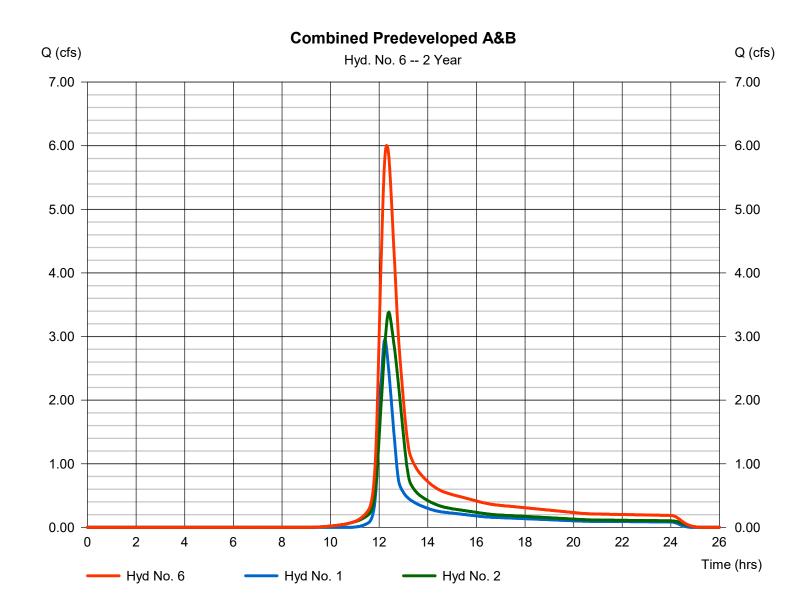

Wednesday, 07 / 26 / 2023

Hyd. No. 5

Postdeveloped C

Hydrograph type = SCS Runoff Peak discharge = 1.089 cfsStorm frequency = 2 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 2,178 cuftDrainage area = 0.720 acCurve number = 80* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.00 min = User Total precip. = 2.50 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.050 \times 98) + (0.670 \times 79)] / 0.720$

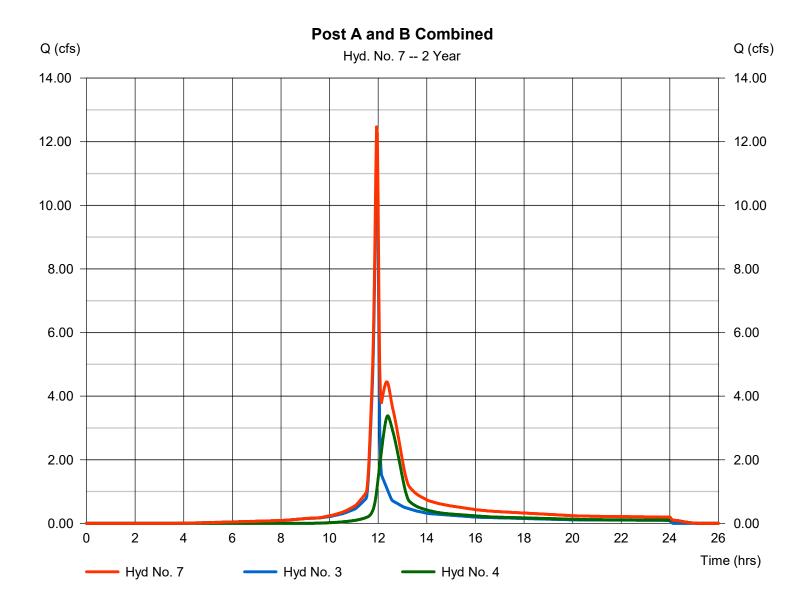

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Hyd. No. 6

Combined Predeveloped A&B

Hydrograph type = Combine Peak discharge = 6.002 cfsStorm frequency Time to peak = 2 yrs $= 12.30 \, hrs$ Time interval = 2 min Hyd. volume = 33,025 cuft Inflow hyds. = 1, 2 Contrib. drain. area = 8.960 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

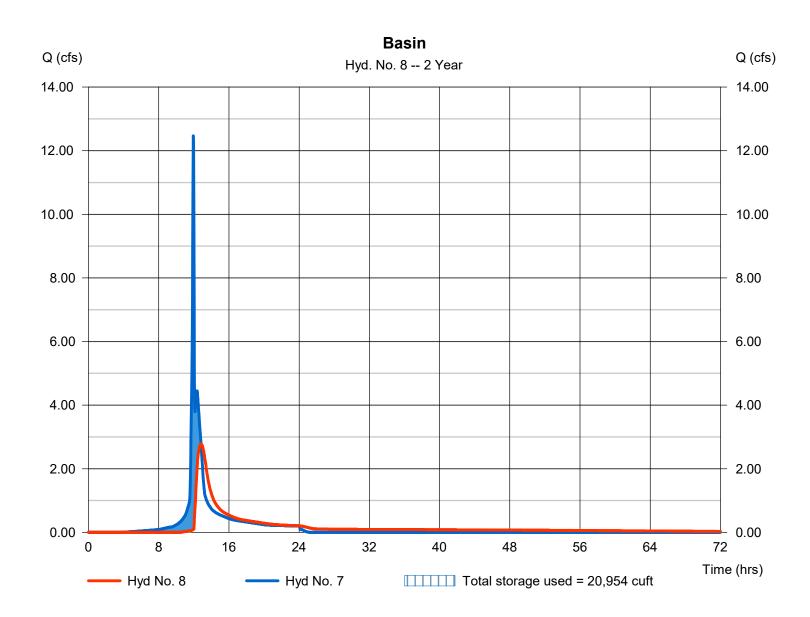
Wednesday, 07 / 26 / 2023

Hyd. No. 7

Post A and B Combined

= 12.47 cfsHydrograph type = Combine Peak discharge Storm frequency Time to peak = 2 yrs $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 44,142 cuft Inflow hyds. = 3, 4 Contrib. drain. area = 8.240 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

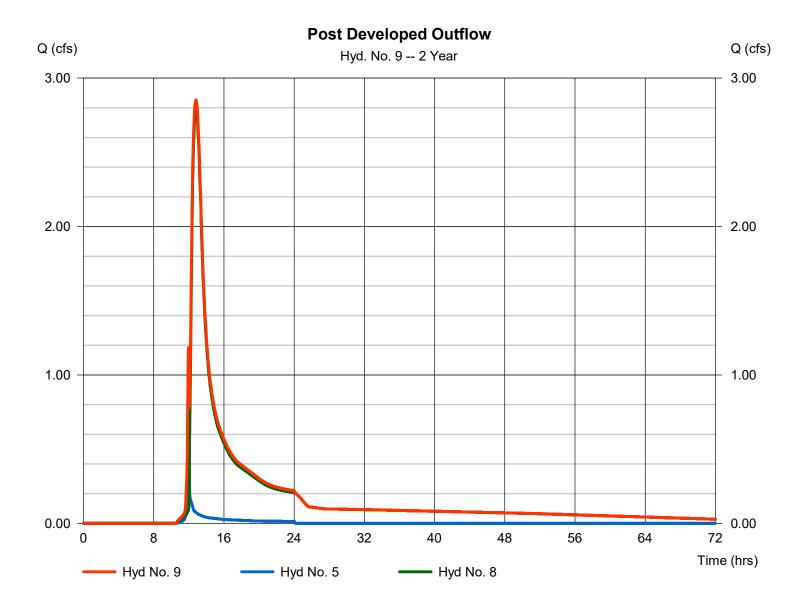

Wednesday, 07 / 26 / 2023

Hyd. No. 8

Basin

Hydrograph type Peak discharge = 2.779 cfs= Reservoir Storm frequency = 2 yrsTime to peak $= 12.80 \, hrs$ Time interval = 2 min Hyd. volume = 41,842 cuft Inflow hyd. No. = 7 - Post A and B Combined Max. Elevation = 707.16 ft= 20,954 cuft Reservoir name = Detention Basin Max. Storage

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Hyd. No. 9

Post Developed Outflow

Hydrograph type = Combine Peak discharge = 2.853 cfsTime to peak Storm frequency = 2 yrs $= 12.80 \, hrs$ Time interval = 2 min Hyd. volume = 44,020 cuftInflow hyds. = 5,8 Contrib. drain. area = 0.720 ac

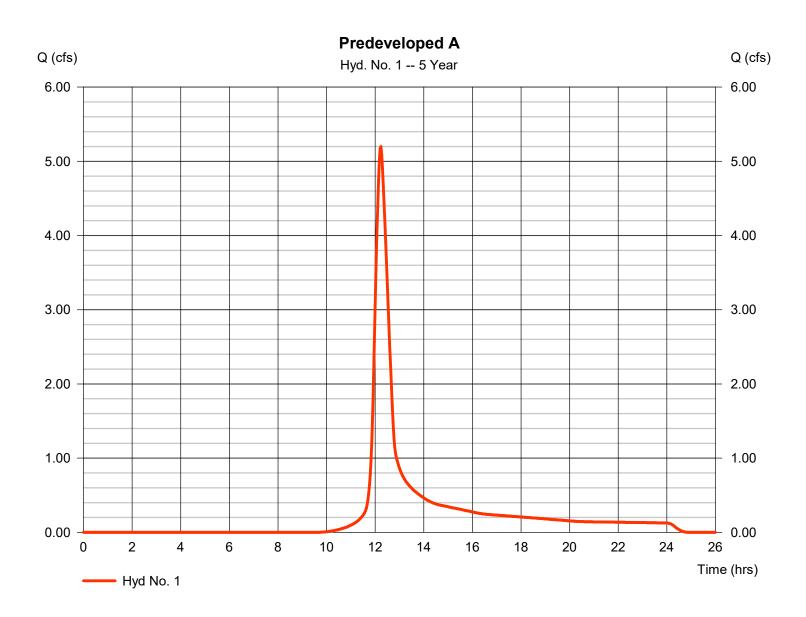
Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

The control of the					• •	- 1	Hydrafl	low Hydrographs	s Extension for A	Extension for Autodesk® Civil 3D® by Autodesk, Inc. v		
SCS Runoff 5,358 2 744 30,378 Predeveloped B SCS Runoff 15,69 2 716 34,537 Postdeveloped A SCS Runoff 1,5358 2 744 30,378 Postdeveloped B SCS Runoff 1,802 2 718 3,625 Postdeveloped C Combine 9,993 2 738 53,320 1,2, Combined Predeveloped A&B Combine 17,41 2 716 64,915 3,4, Post A and B Combined Reservoir Reservoir 4,820 2 762 66,239 5,8 931 Developed Outflow	Hyd. No.	type	flow	interval	Peak	volume		elevation	strge used			
SCS Runoff 15.69 2 716 34,537	1	SCS Runoff	5.200	2	734	22,943				Predeveloped A		
SCS Runoff 5,358 2 744 30,378 Postdeveloped B SCS Runoff 1,802 2 718 3,825 Postdeveloped C Combine 9,993 2 738 53,320 1,2, Combined Predeveloped A&B Combine 17,41 2 716 64,915 3,4, Post A and B Combined Reservoir 4,820 2 762 62,615 7 707.84 27,277 Basin Combine 4,943 2 762 66,239 5,8 Post Developed Outflow	2	SCS Runoff	5.358	2	744	30,378				Predeveloped B		
SCS Runolf 1,802 2 718 3,625 Postdeveloped C Combine 9,993 2 738 53,320 1,2 Combined Predeveloped A&B Combine 17,41 2 716 64,915 3,4 Post A and B Combined Reservoir 4,820 2 762 62,615 7 707.84 27,277 Basin Combine 4,943 2 762 66,239 5,8 Post Developed Outflow	3	SCS Runoff	15.69	2	716	34,537				Postdeveloped A		
Combine 9.993 2 738 53,320 1, 2, Combined Predeveloped A&B Combine 17.41 2 716 64,915 3, 4, Post A and B Combined Reservoir 4.820 2 762 62,615 7 707.84 27,277 Basin Combine 4.943 2 762 66,239 5,8 Post Developed Outflow	4	SCS Runoff	5.358	2	744	30,378				Postdeveloped B		
Combine 17.41 2 716 64.915 3.4. Post A and B Combined Reservoir 4.820 2 762 62.615 7 707.84 27.277 Basin Combine 4.943 2 762 66.239 5.8 Post Developed Outflow	5	SCS Runoff	1.802	2	718	3,625				Postdeveloped C		
Reservoir 4.820 2 762 62.616 7 707.84 27.277 Basin Combine 4.943 2 762 66,239 5.8 Post Developed Outflow	6	Combine	9.993	2	738	53,320	1, 2,			Combined Predeveloped A&B		
Combine 4.943 2 762 66,239 5, 8 Post Developed Outflow	7	Combine	17.41	2	716	64,915	3, 4,			Post A and B Combined		
	8	Reservoir	4.820	2	762	62,615	7	707.84	27,277	Basin		
31032 Hvdro gow Return Period: 5 Year Wednesday, 07 / 26 / 2023	9	Combine	4.943	2	762	66,239	5, 8			Post Developed Outflow		
31032 Hydro gpw Return Period: 5 Year Wednesday, 07 / 26 / 2023												
Totalii Tollod. o Todi Wodilosday, 07/20/2020	E23	⊔ 31032 Hydro.ឲ	gpw	1	1	Return F	Period: 5 Ye	ear	Wednesda	Wednesday, 07 / 26 / 2023		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023


Hyd. No. 1

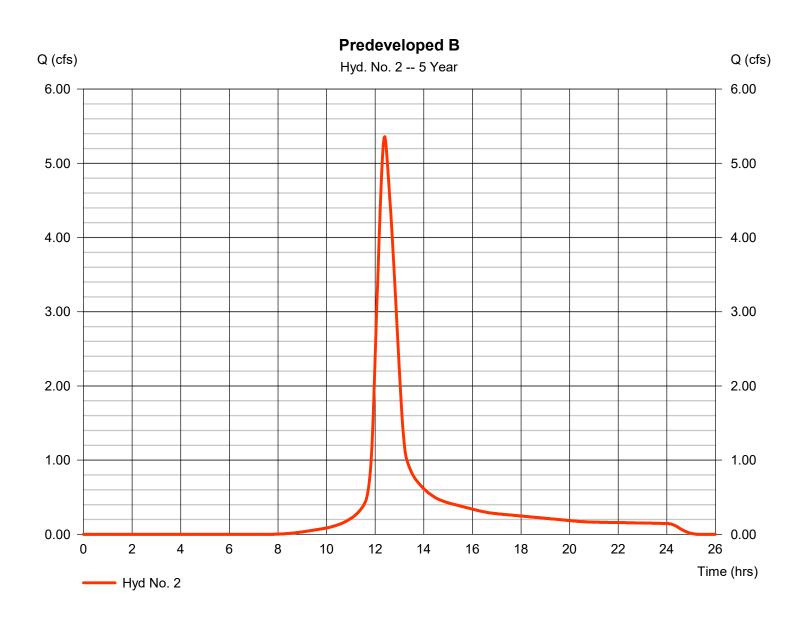
Predeveloped A

Hydrograph type = SCS Runoff Peak discharge = 5.200 cfsStorm frequency = 5 yrsTime to peak $= 12.23 \, hrs$ Time interval = 2 min Hyd. volume = 22.943 cuft Drainage area = 4.420 acCurve number = 79* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 30.90 \, \text{min}$ = TR55

Total precip. = 3.30 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(0.055 x 98) + (4.365 x 79)] / 4.420

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

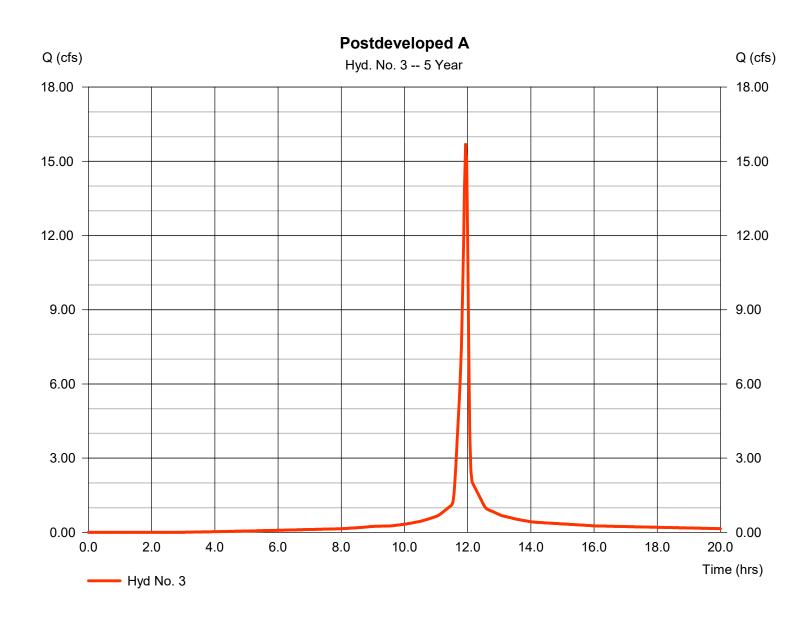
Hyd. No. 2

Predeveloped B

Hydrograph type = SCS Runoff Peak discharge = 5.358 cfsStorm frequency = 5 yrsTime to peak $= 12.40 \, hrs$ Time interval = 2 min Hyd. volume = 30.378 cuft Drainage area = 4.540 acCurve number = 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = TR55 $= 49.90 \, \text{min}$ Total precip. = 3.30 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(1.460 \times 98) + (3.080 \times 79)] / 4.540$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

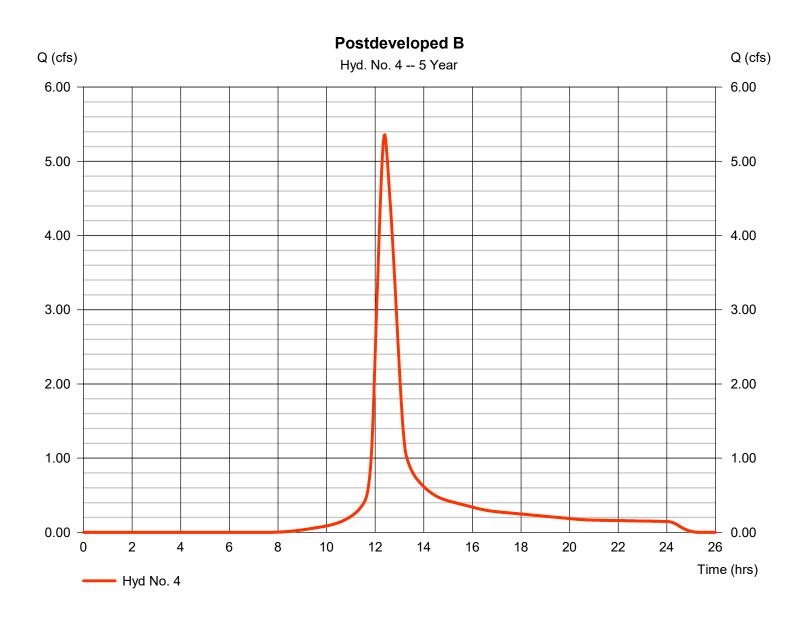
Hyd. No. 3

Postdeveloped A

Hydrograph type = SCS Runoff Peak discharge = 15.69 cfsStorm frequency = 5 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 34.537 cuft Drainage area Curve number = 3.700 ac= 95* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.30 \, \text{min}$ = TR55 Total precip. = 3.30 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(3.130 \times 98) + (0.570 \times 79)] / 3.700$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

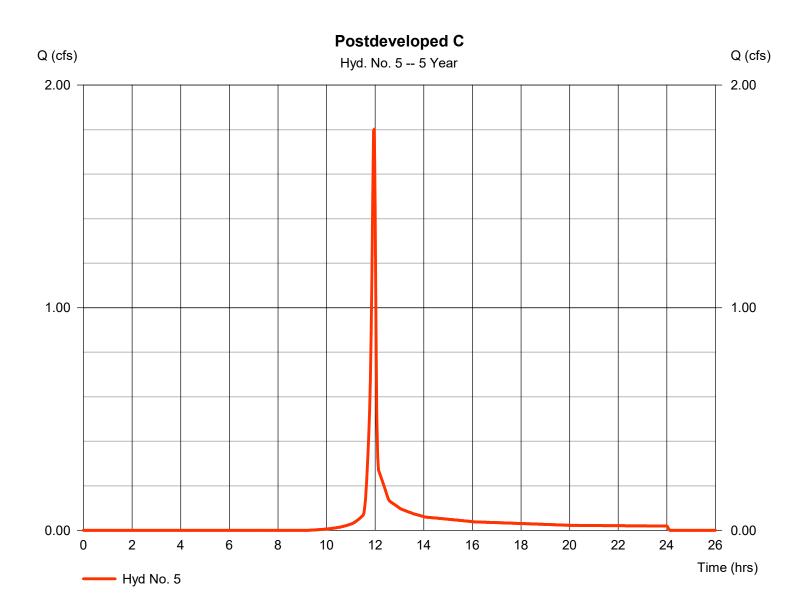
Hyd. No. 4

Postdeveloped B

Hydrograph type = SCS Runoff Peak discharge = 5.358 cfsStorm frequency = 5 yrsTime to peak $= 12.40 \, hrs$ Time interval = 2 min Hyd. volume = 30.378 cuft Drainage area = 4.540 acCurve number = 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = TR55 $= 49.90 \, \text{min}$ Total precip. = 3.30 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(1.460 \times 98) + (3.080 \times 79)] / 4.540$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

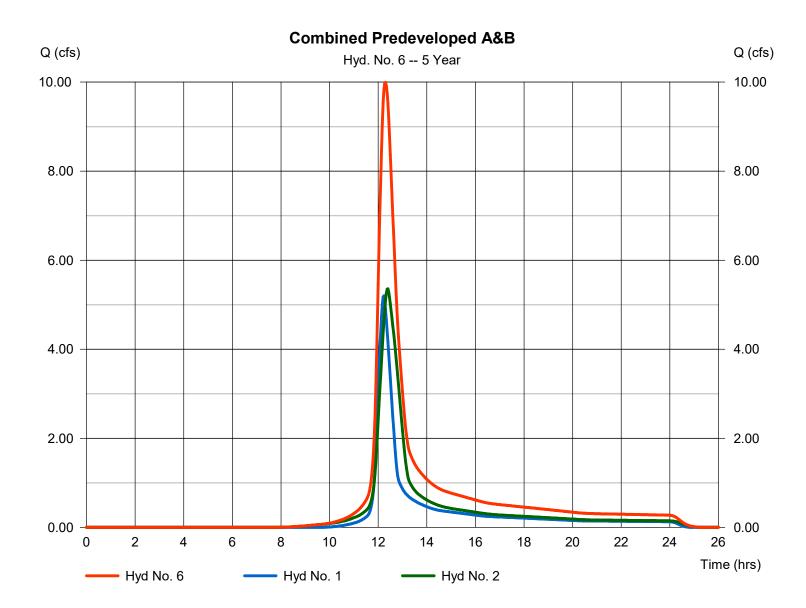

Wednesday, 07 / 26 / 2023

Hyd. No. 5

Postdeveloped C

Hydrograph type = SCS Runoff Peak discharge = 1.802 cfsStorm frequency = 5 yrsTime to peak $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 3,625 cuft= 0.720 acDrainage area Curve number = 80* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.00 min = User Total precip. = 3.30 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.050 \times 98) + (0.670 \times 79)] / 0.720$

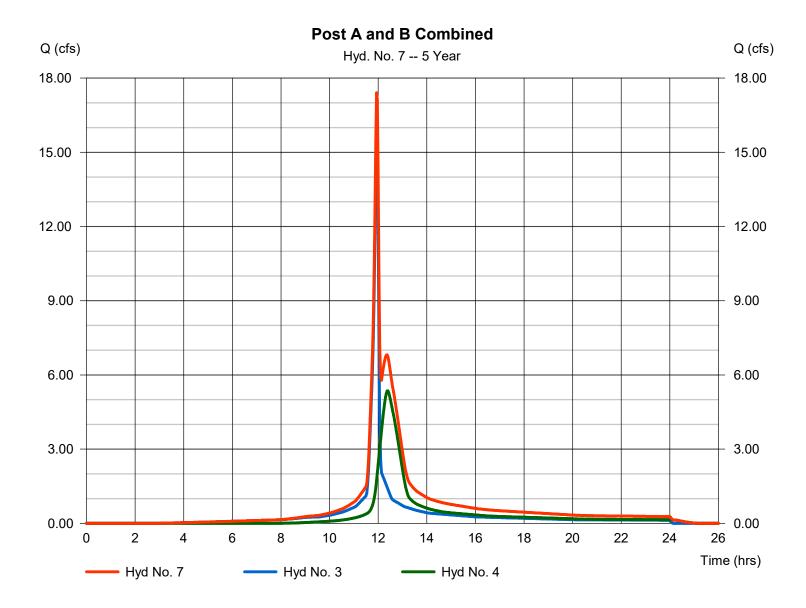

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Hyd. No. 6

Combined Predeveloped A&B

Hydrograph type = Combine Peak discharge = 9.993 cfsStorm frequency = 5 yrsTime to peak $= 12.30 \, hrs$ Time interval = 2 min Hyd. volume = 53,320 cuftInflow hyds. = 1, 2 Contrib. drain. area = 8.960 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

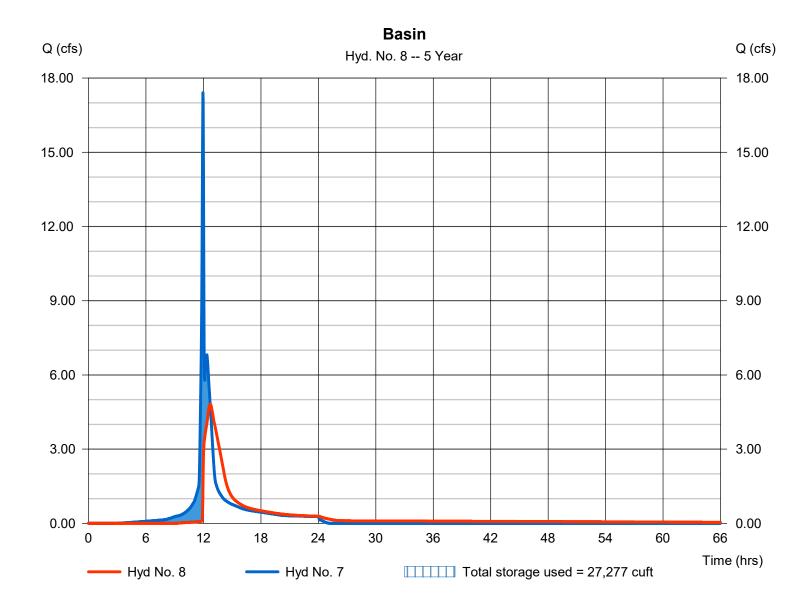
Wednesday, 07 / 26 / 2023

Hyd. No. 7

Post A and B Combined

Hydrograph type = Combine Peak discharge = 17.41 cfsStorm frequency Time to peak = 5 yrs $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 64,915 cuft Inflow hyds. = 3, 4 Contrib. drain. area = 8.240 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

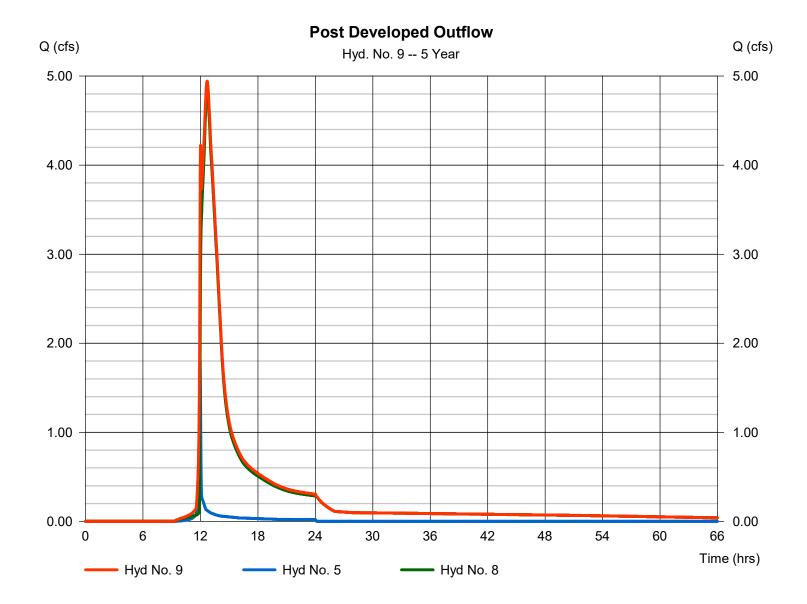

Wednesday, 07 / 26 / 2023

Hyd. No. 8

Basin

Hydrograph type = Reservoir Peak discharge = 4.820 cfsStorm frequency = 5 yrsTime to peak $= 12.70 \, hrs$ Time interval = 2 min Hyd. volume = 62,615 cuftInflow hyd. No. = 7 - Post A and B Combined Max. Elevation = 707.84 ftReservoir name = Detention Basin Max. Storage = 27,277 cuft

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Hyd. No. 9

Post Developed Outflow

Hydrograph type = Combine Peak discharge = 4.943 cfsStorm frequency Time to peak = 5 yrs $= 12.70 \, hrs$ Time interval = 2 min Hyd. volume = 66,239 cuft Inflow hyds. Contrib. drain. area = 0.720 ac= 5, 8

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

No.	lydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1 S	SCS Runoff	6.399	2	734	27,988				Predeveloped A
2 S	SCS Runoff	6.379	2	744	36,118				Predeveloped B
3 S	SCS Runoff	17.78	2	716	39,483				Postdeveloped A
4 S	SCS Runoff	6.379	2	744	36,118				Postdeveloped B
5 S	SCS Runoff	2.180	2	716	4,402				Postdeveloped C
6	Combine	12.10	2	736	64,106	1, 2,			Combined Predeveloped A&B
7	Combine	19.89	2	716	75,600	3, 4,			Post A and B Combined
8 F	Reservoir	5.999	2	760	73,300	7	708.11	30,083	Basin

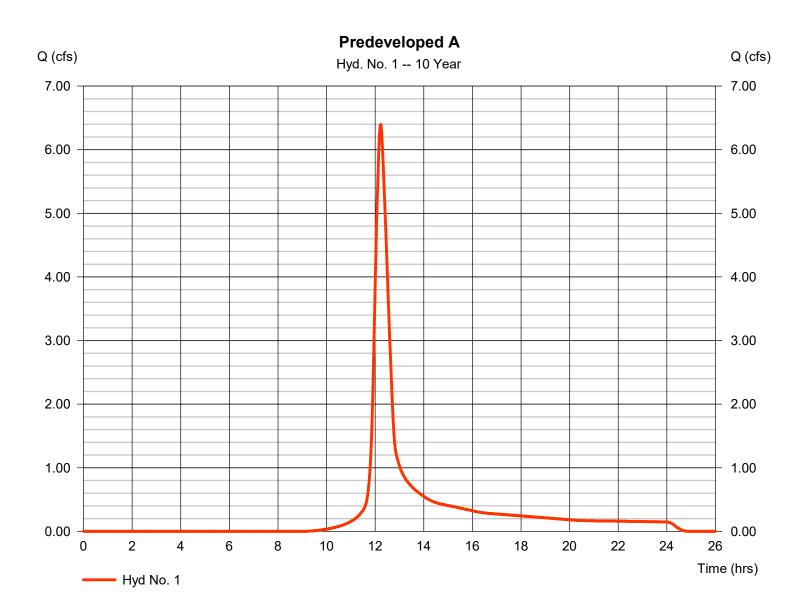
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

= 24 hrs

Wednesday, 07 / 26 / 2023

= 484

Hyd. No. 1


Predeveloped A

Storm duration

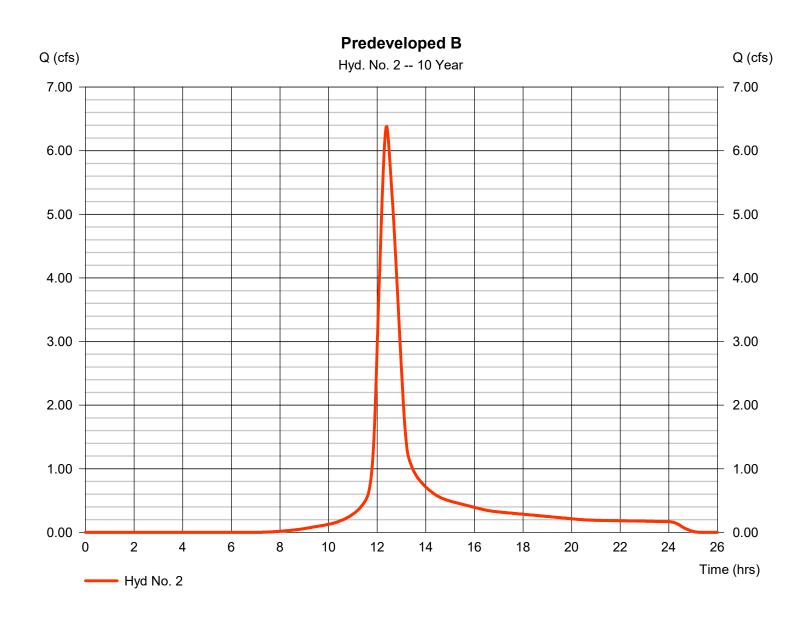
Hydrograph type = SCS Runoff Peak discharge = 6.399 cfsStorm frequency = 10 yrsTime to peak $= 12.23 \, hrs$ Time interval = 2 min Hyd. volume = 27.988 cuft Curve number Drainage area = 4.420 ac= 79* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 30.90 \, \text{min}$ = TR55 Total precip. Distribution = Type II = 3.70 in

Shape factor

^{*} Composite (Area/CN) = [(0.055 x 98) + (4.365 x 79)] / 4.420

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023


Hyd. No. 2

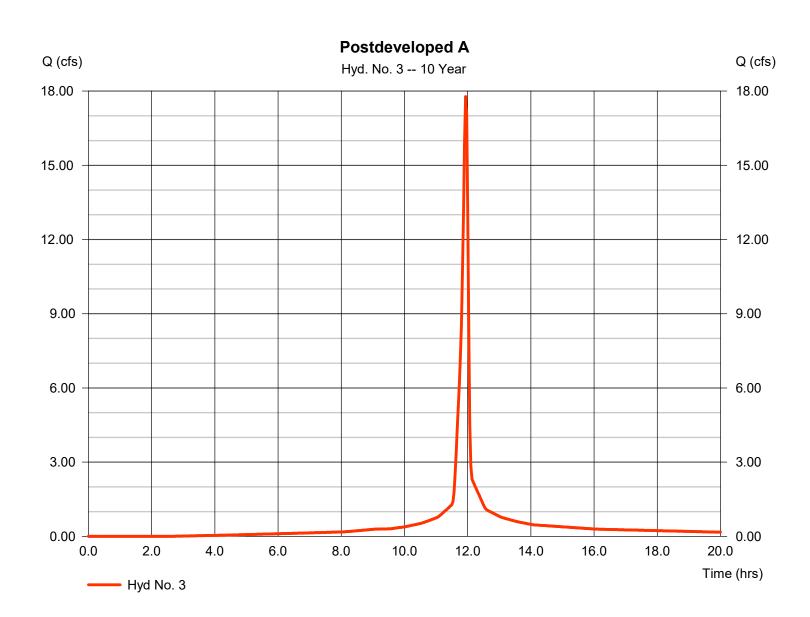
Predeveloped B

Hydrograph type = SCS Runoff Peak discharge = 6.379 cfsStorm frequency = 10 yrsTime to peak $= 12.40 \, hrs$ Time interval = 2 min Hyd. volume = 36.118 cuft Curve number Drainage area = 4.540 ac= 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 49.90 min = TR55

Total precip. Distribution = Type II = 3.70 inShape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(1.460 x 98) + (3.080 x 79)] / 4.540

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

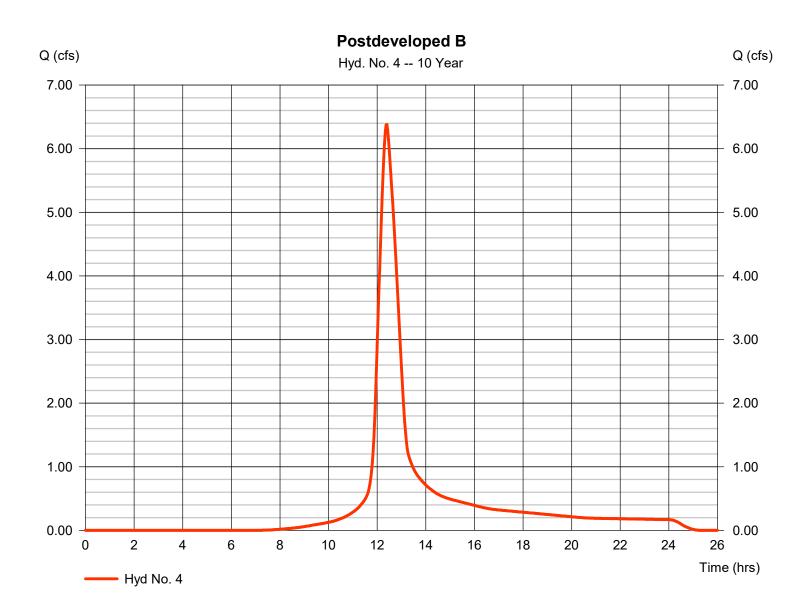
Hyd. No. 3

Postdeveloped A

Hydrograph type = SCS Runoff Peak discharge = 17.78 cfsStorm frequency = 10 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 39.483 cuft Drainage area Curve number = 3.700 ac= 95* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.30 \, \text{min}$ = TR55 Total precip. Distribution = Type II = 3.70 inStorm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(3.130 \times 98) + (0.570 \times 79)] / 3.700$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

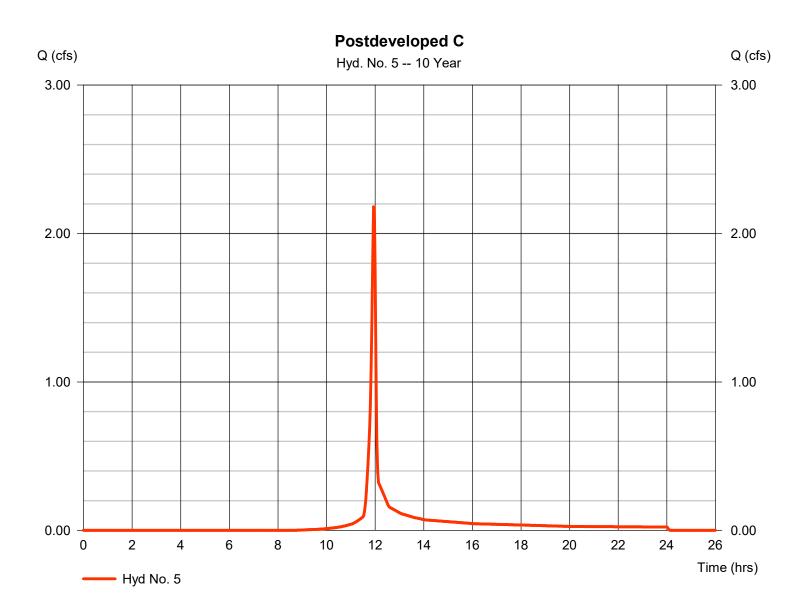
Hyd. No. 4

Postdeveloped B

Hydrograph type = SCS Runoff Peak discharge = 6.379 cfsStorm frequency = 10 yrsTime to peak $= 12.40 \, hrs$ Time interval = 2 min Hyd. volume = 36.118 cuft Drainage area Curve number = 4.540 ac= 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 49.90 min = TR55 Total precip. Distribution = Type II = 3.70 inShape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(1.460 \times 98) + (3.080 \times 79)] / 4.540$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

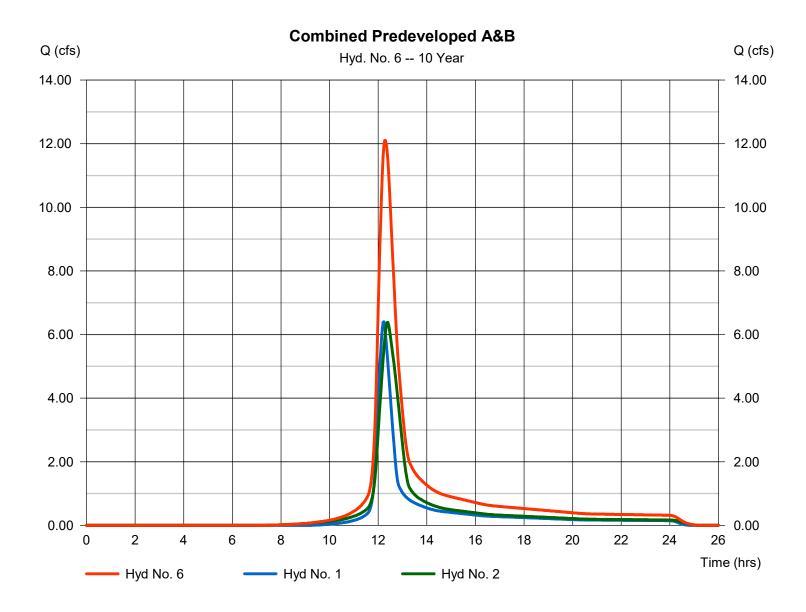

Wednesday, 07 / 26 / 2023

Hyd. No. 5

Postdeveloped C

Hydrograph type = SCS Runoff Peak discharge = 2.180 cfsStorm frequency = 10 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 4,402 cuftDrainage area = 0.720 acCurve number = 80* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.00 min = User Total precip. = 3.70 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.050 \times 98) + (0.670 \times 79)] / 0.720$

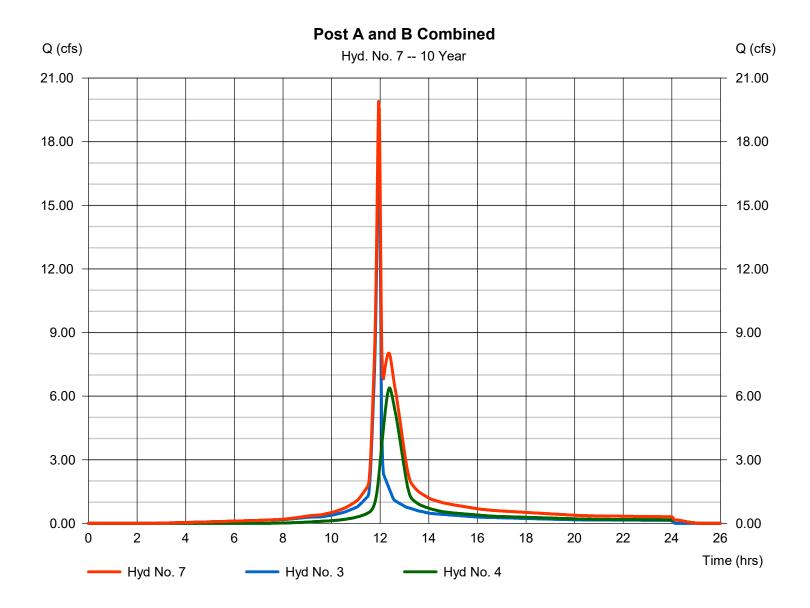

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Hyd. No. 6

Combined Predeveloped A&B

Hydrograph type = Combine Peak discharge = 12.10 cfsStorm frequency = 10 yrsTime to peak $= 12.27 \, hrs$ Time interval = 2 min Hyd. volume = 64,106 cuft Inflow hyds. = 1, 2 Contrib. drain. area = 8.960 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

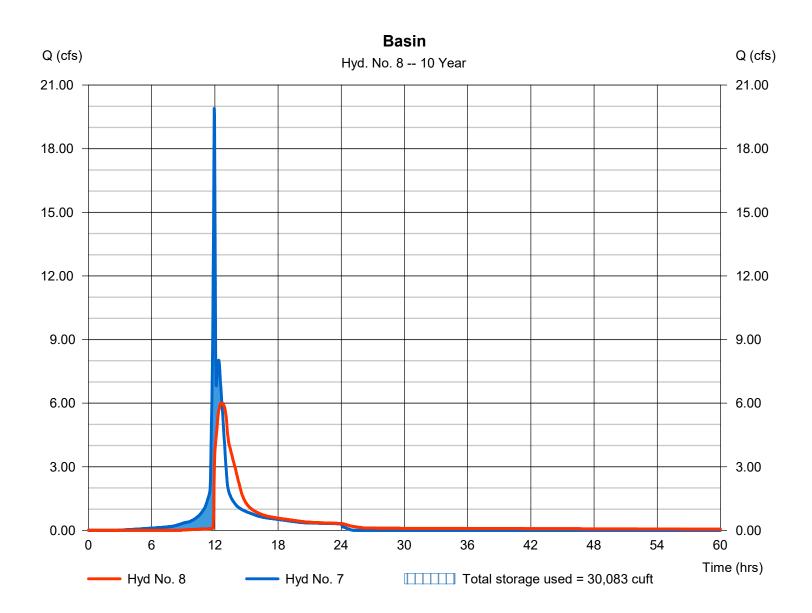
Wednesday, 07 / 26 / 2023

Hyd. No. 7

Post A and B Combined

Hydrograph type = Combine Peak discharge = 19.89 cfsStorm frequency Time to peak = 10 yrs $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 75,600 cuftInflow hyds. Contrib. drain. area = 8.240 ac= 3, 4

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

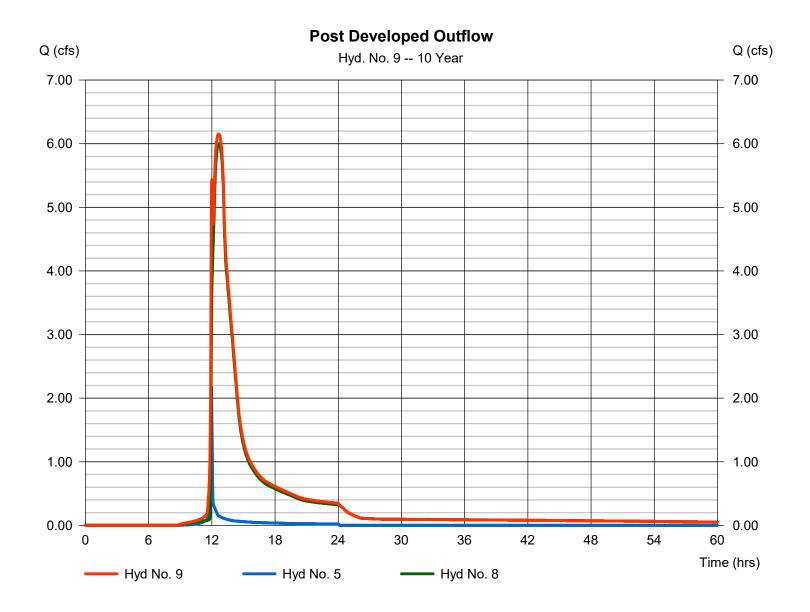

Wednesday, 07 / 26 / 2023

Hyd. No. 8

Basin

Hydrograph type = Reservoir Peak discharge = 5.999 cfsStorm frequency = 10 yrsTime to peak $= 12.67 \, hrs$ Time interval = 2 min Hyd. volume = 73,300 cuftInflow hyd. No. = 7 - Post A and B Combined Max. Elevation = 708.11 ft = Detention Basin = 30,083 cuft Reservoir name Max. Storage

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Hyd. No. 9

Post Developed Outflow

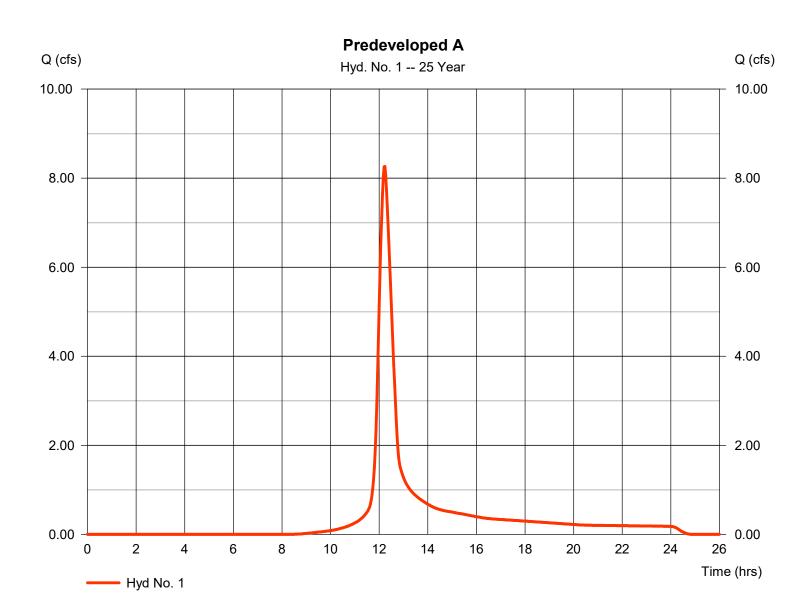
Hydrograph type = Combine Peak discharge = 6.149 cfsStorm frequency Time to peak = 10 yrs $= 12.63 \, hrs$ Time interval = 2 min Hyd. volume = 77,702 cuft Inflow hyds. Contrib. drain. area = 0.720 ac= 5, 8

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description		
1	SCS Runoff	8.262	2	734	35,896				Predeveloped A		
2	SCS Runoff	7.939	2	742	44,951				Predeveloped B		
3	SCS Runoff	20.90	2	716	46,930				Postdeveloped A		
1	SCS Runoff	7.939	2	742	44,951				Postdeveloped B		
5	SCS Runoff	2.775	2	716	5,616				Postdeveloped C		
3	Combine	15.37	2	736	80,847	1, 2,			Combined Predeveloped A&B		
7	Combine	23.62	2	716	91,881	3, 4,			Post A and B Combined		
3	Reservoir	6.545	2	764	89,581	7	708.67	36,554	Basin		
9	Combine	7.862	2	720	95,197	5, 8			Post Developed Outflow		
E231032 Hydro.gpw					Return I	□ Period: 25 \	⊥ ∕ear	Wednesda	Wednesday, 07 / 26 / 2023		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

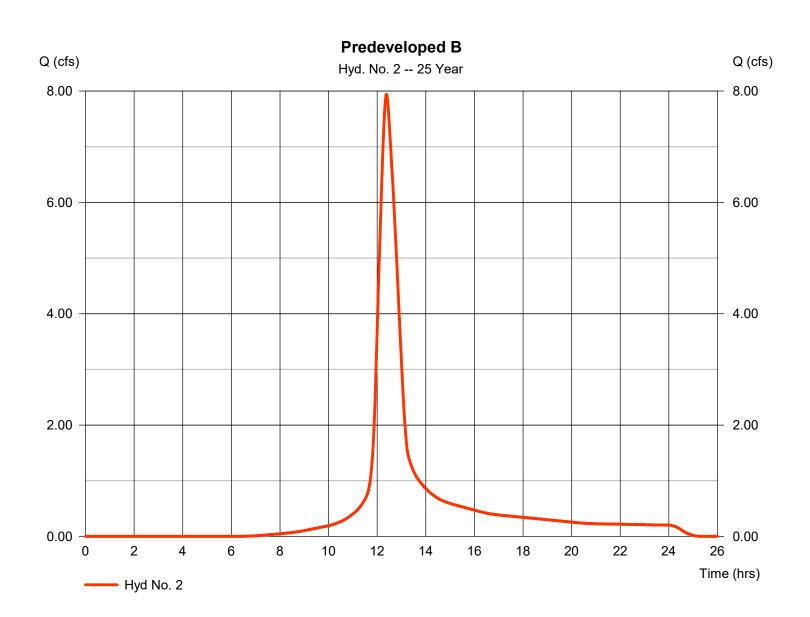
Hyd. No. 1

Predeveloped A

Hydrograph type = SCS Runoff Peak discharge = 8.262 cfsStorm frequency = 25 yrs Time to peak $= 12.23 \, hrs$ Time interval = 2 min Hyd. volume = 35.896 cuft Curve number = 79* Drainage area = 4.420 acBasin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 30.90 \, \text{min}$ = TR55 Total precip. = 4.30 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(0.055 x 98) + (4.365 x 79)] / 4.420

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

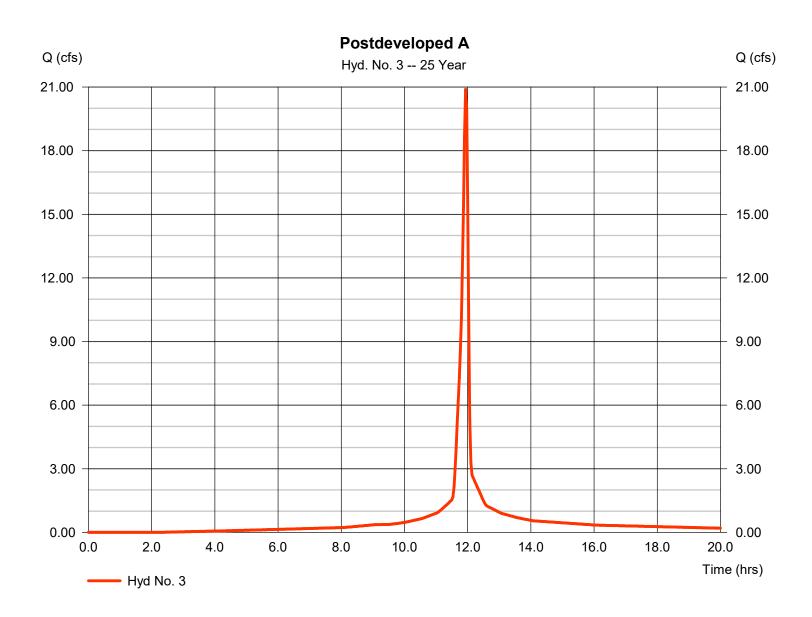
Hyd. No. 2

Predeveloped B

Hydrograph type = SCS Runoff Peak discharge = 7.939 cfsStorm frequency = 25 yrs Time to peak $= 12.37 \, hrs$ Time interval = 2 min Hyd. volume = 44,951 cuft = 4.540 acCurve number Drainage area = 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 49.90 min = TR55 Total precip. = 4.30 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(1.460 x 98) + (3.080 x 79)] / 4.540

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

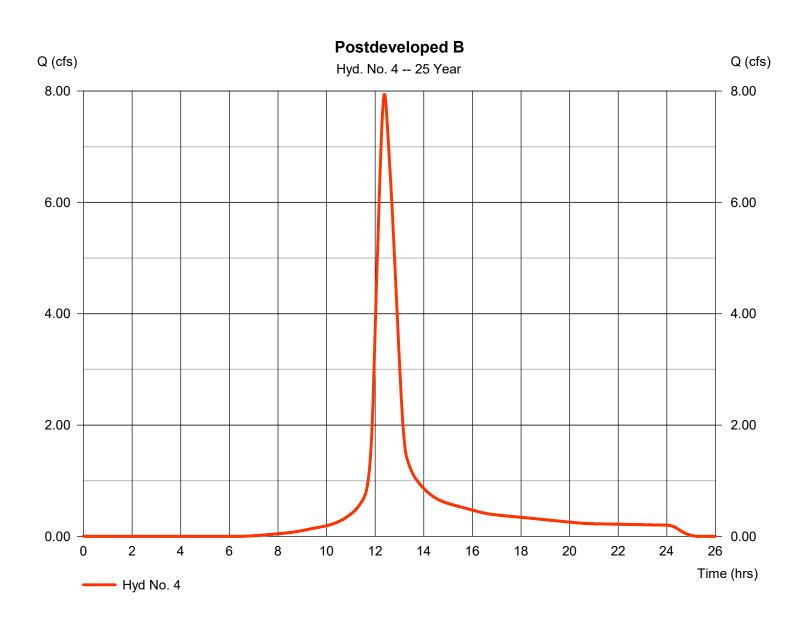
Hyd. No. 3

Postdeveloped A

Hydrograph type = SCS Runoff Peak discharge = 20.90 cfsStorm frequency = 25 yrs Time to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 46.930 cuftDrainage area Curve number = 3.700 ac= 95* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.30 \, \text{min}$ = TR55 Total precip. = 4.30 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(3.130 \times 98) + (0.570 \times 79)] / 3.700$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

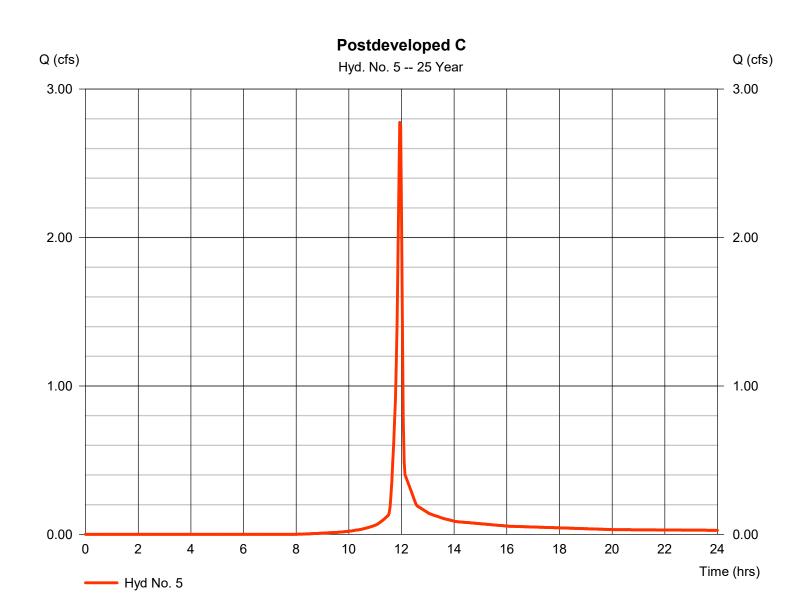
Hyd. No. 4

Postdeveloped B

Hydrograph type = SCS Runoff Peak discharge = 7.939 cfsStorm frequency = 25 yrs Time to peak $= 12.37 \, hrs$ Time interval = 2 min Hyd. volume = 44,951 cuft = 4.540 acCurve number Drainage area = 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 49.90 min = TR55 Total precip. = 4.30 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(1.460 x 98) + (3.080 x 79)] / 4.540

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

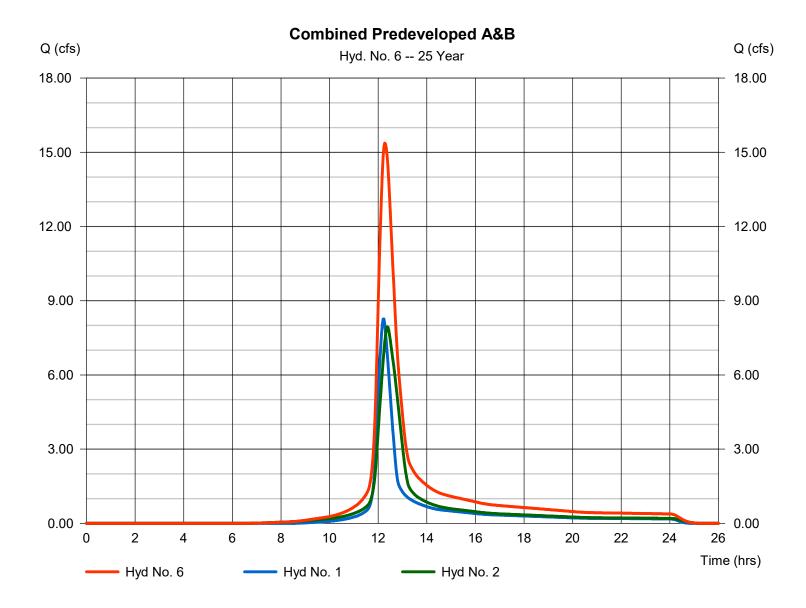

Wednesday, 07 / 26 / 2023

Hyd. No. 5

Postdeveloped C

Hydrograph type = SCS Runoff Peak discharge = 2.775 cfsStorm frequency = 25 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 5,616 cuftDrainage area = 0.720 acCurve number = 80* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 5.00 \, \text{min}$ = User Total precip. = 4.30 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(0.050 \times 98) + (0.670 \times 79)] / 0.720$

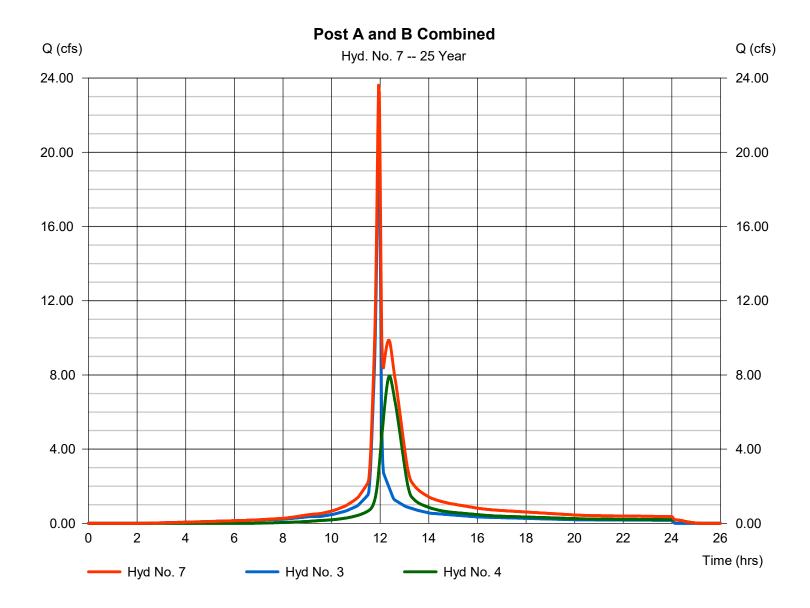

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Hyd. No. 6

Combined Predeveloped A&B

Hydrograph type = Combine Peak discharge = 15.37 cfsStorm frequency = 25 yrsTime to peak $= 12.27 \, hrs$ Time interval = 2 min Hyd. volume = 80,847 cuft Inflow hyds. = 1, 2 Contrib. drain. area = 8.960 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

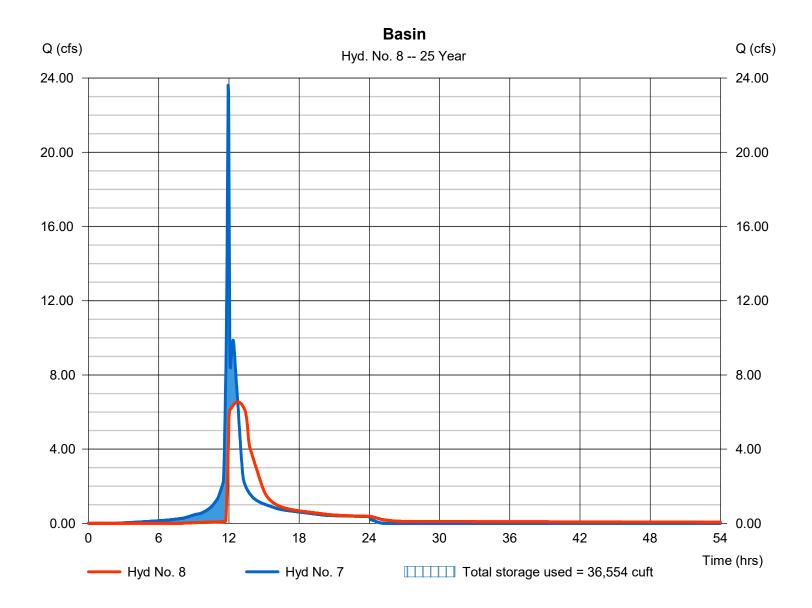
Wednesday, 07 / 26 / 2023

Hyd. No. 7

Post A and B Combined

Hydrograph type = Combine Peak discharge = 23.62 cfsStorm frequency Time to peak = 25 yrs $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 91,881 cuft Inflow hyds. Contrib. drain. area = 3, 4= 8.240 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

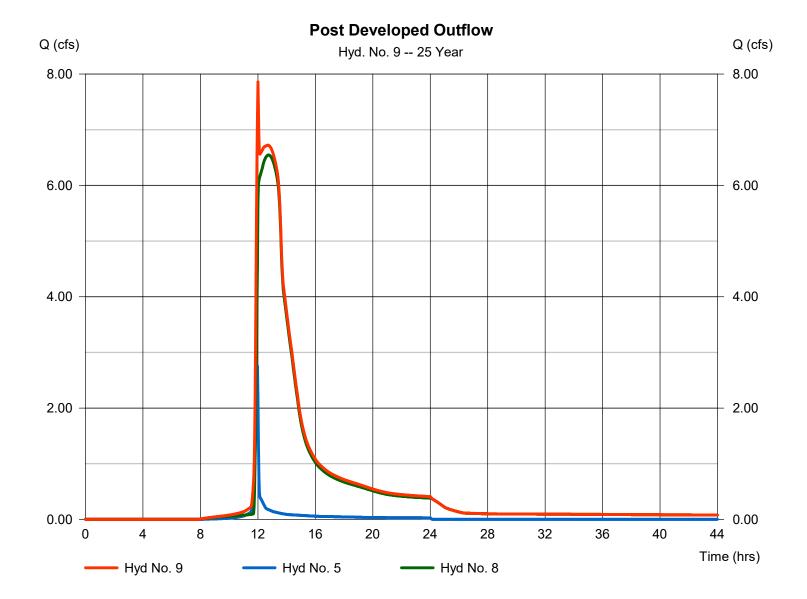

Wednesday, 07 / 26 / 2023

Hyd. No. 8

Basin

Hydrograph type = Reservoir Peak discharge = 6.545 cfsStorm frequency = 25 yrsTime to peak $= 12.73 \, hrs$ Time interval = 2 min Hyd. volume = 89,581 cuft Inflow hyd. No. = 7 - Post A and B Combined Max. Elevation = 708.67 ft= Detention Basin Reservoir name Max. Storage = 36,554 cuft

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Hyd. No. 9

Post Developed Outflow

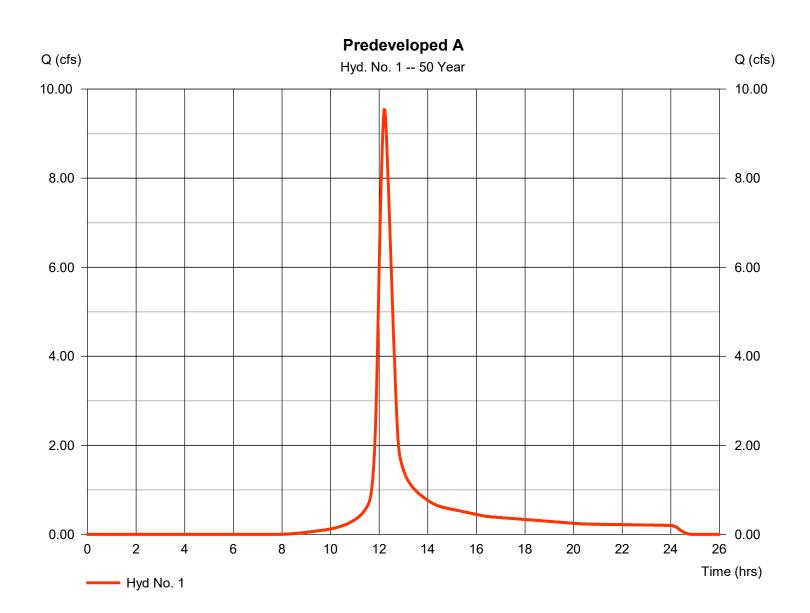
Hydrograph type = Combine Peak discharge = 7.862 cfsTime to peak Storm frequency = 25 yrs $= 12.00 \, hrs$ Time interval = 2 min Hyd. volume = 95,197 cuft Inflow hyds. = 5, 8Contrib. drain. area = 0.720 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

lyd. lo.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description			
1	SCS Runoff	9.543	2	732	41,348				Predeveloped A			
2	SCS Runoff	8.992	2	742	50,955				Predeveloped B			
3	SCS Runoff	22.97	2	716	51,909				Postdeveloped A			
1	SCS Runoff	8.992	2	742	50,955				Postdeveloped B			
5	SCS Runoff	3.179	2	716	6,451				Postdeveloped C			
6	Combine	17.59	2	736	92,303	1, 2,			Combined Predeveloped A&B			
7	Combine	26.10	2	716	102,864	3, 4,			Post A and B Combined			
3	Reservoir	7.776	2	762	100,564	7	709.06	41,270	Basin			
9	Combine	9.045	2	718	107,015	5, 8			Post Developed Outflow			
=231032 Hydro.gpw					Poture 5	Period: 50 \	/oor	Wednesda	Wednesday, 07 / 26 / 2023			

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

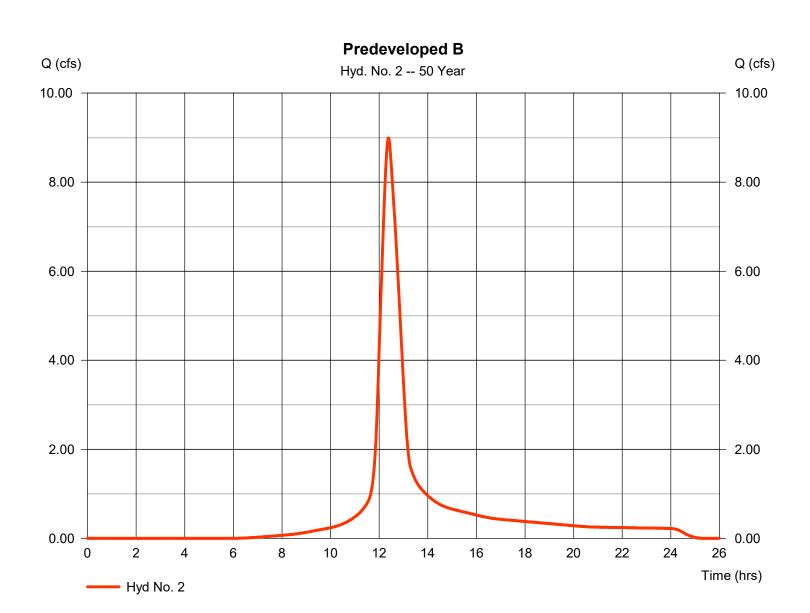
Hyd. No. 1

Predeveloped A

Hydrograph type = SCS Runoff Peak discharge = 9.543 cfsStorm frequency = 50 yrsTime to peak $= 12.20 \, hrs$ Time interval = 2 min Hyd. volume = 41,348 cuft Curve number Drainage area = 4.420 ac= 79* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) $= 30.90 \, \text{min}$ = TR55 Total precip. = 4.70 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(0.055 \times 98) + (4.365 \times 79)] / 4.420$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

Hyd. No. 2

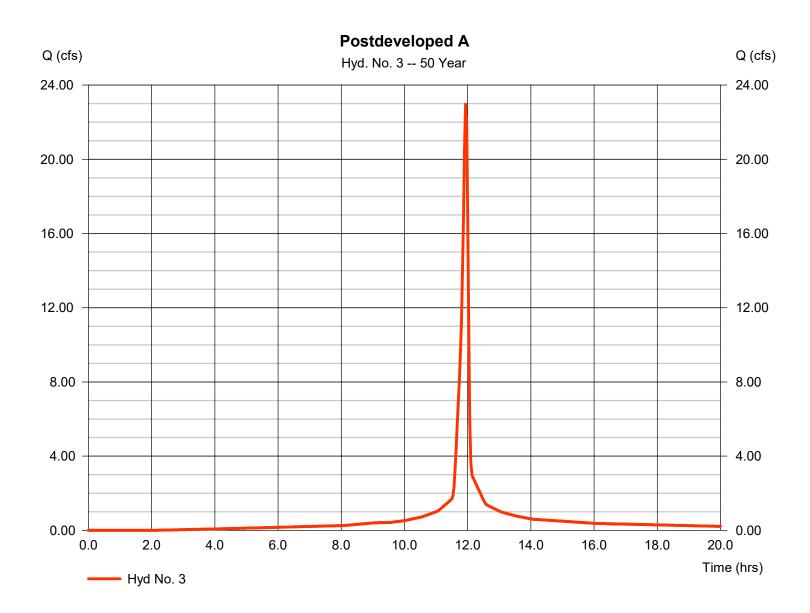
Predeveloped B

Hydrograph type = SCS Runoff Peak discharge = 8.992 cfsStorm frequency = 50 yrsTime to peak $= 12.37 \, hrs$ Time interval = 2 min Hyd. volume = 50.955 cuftCurve number Drainage area = 4.540 ac= 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 49.90 min = TR55 Total precip. = 4.70 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(1.460 \times 98) + (3.080 \times 79)] / 4.540$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023


Hyd. No. 3

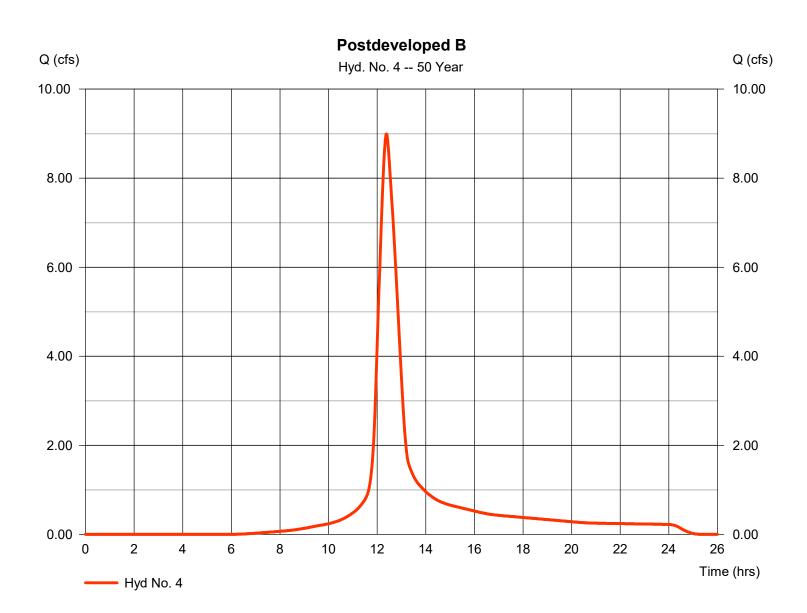
Postdeveloped A

Hydrograph type = SCS Runoff Peak discharge = 22.97 cfsStorm frequency = 50 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 51.909 cuftDrainage area Curve number = 3.700 ac= 95* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.30 min = TR55

Total precip. = 4.70 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = $[(3.130 \times 98) + (0.570 \times 79)] / 3.700$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

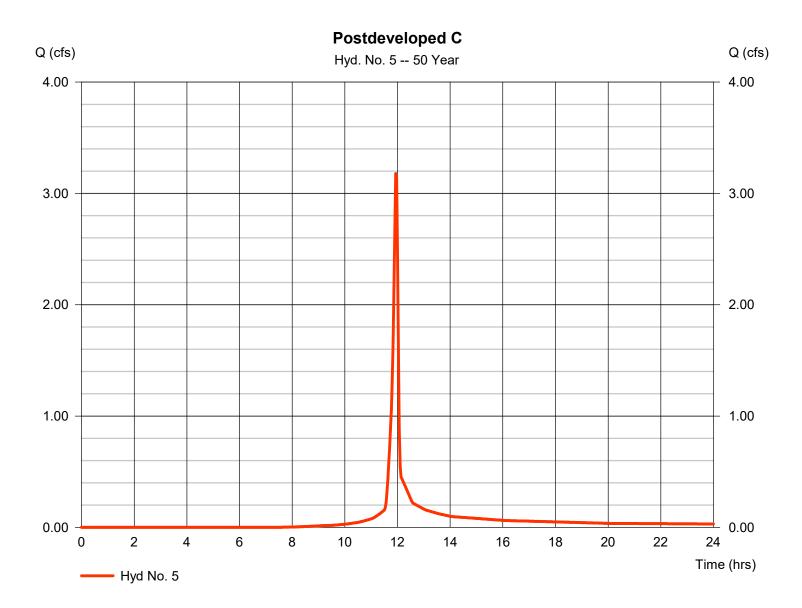
Hyd. No. 4

Postdeveloped B

Hydrograph type = SCS Runoff Peak discharge = 8.992 cfsStorm frequency = 50 yrsTime to peak $= 12.37 \, hrs$ Time interval = 2 min Hyd. volume = 50.955 cuftDrainage area Curve number = 4.540 ac= 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 49.90 min = TR55 Total precip. = 4.70 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(1.460 x 98) + (3.080 x 79)] / 4.540

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

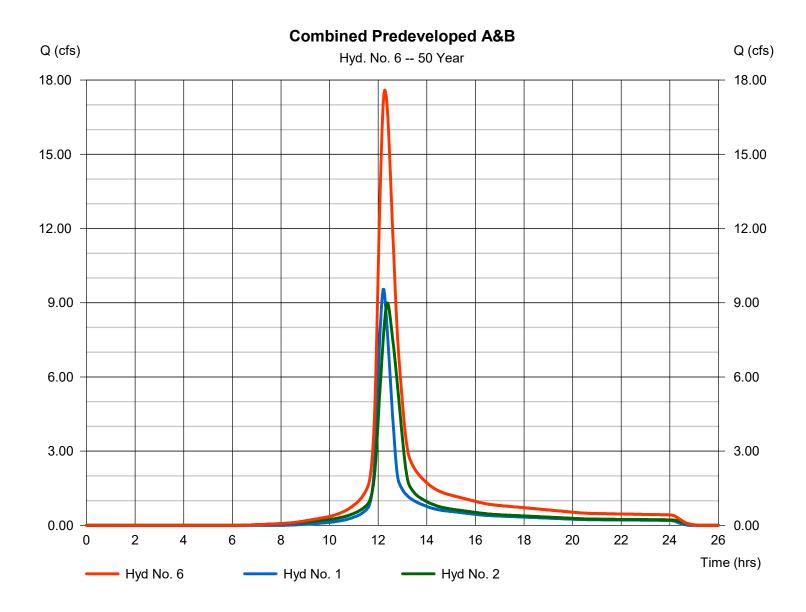

Wednesday, 07 / 26 / 2023

Hyd. No. 5

Postdeveloped C

Hydrograph type = SCS Runoff Peak discharge = 3.179 cfsStorm frequency = 50 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 6,451 cuftCurve number Drainage area = 0.720 ac= 80* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.00 min = User Total precip. = 4.70 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(0.050 \times 98) + (0.670 \times 79)] / 0.720$

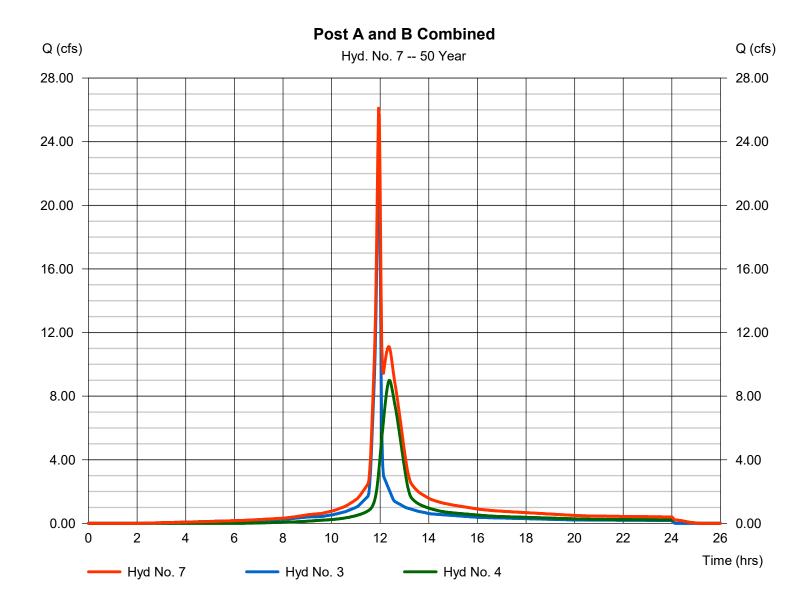

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Hyd. No. 6

Combined Predeveloped A&B

Hydrograph type = Combine Peak discharge = 17.59 cfsStorm frequency = 50 yrsTime to peak $= 12.27 \, hrs$ Time interval = 2 min Hyd. volume = 92,303 cuft Inflow hyds. = 1, 2 Contrib. drain. area = 8.960 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

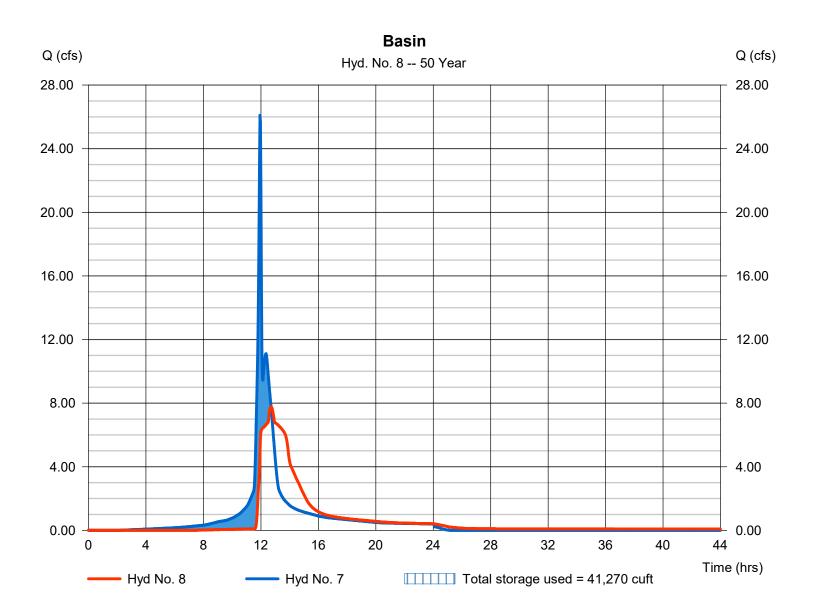
Wednesday, 07 / 26 / 2023

Hyd. No. 7

Post A and B Combined

Hydrograph type = Combine Peak discharge = 26.10 cfsStorm frequency Time to peak = 50 yrs $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 102,864 cuft Inflow hyds. Contrib. drain. area = 3, 4= 8.240 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

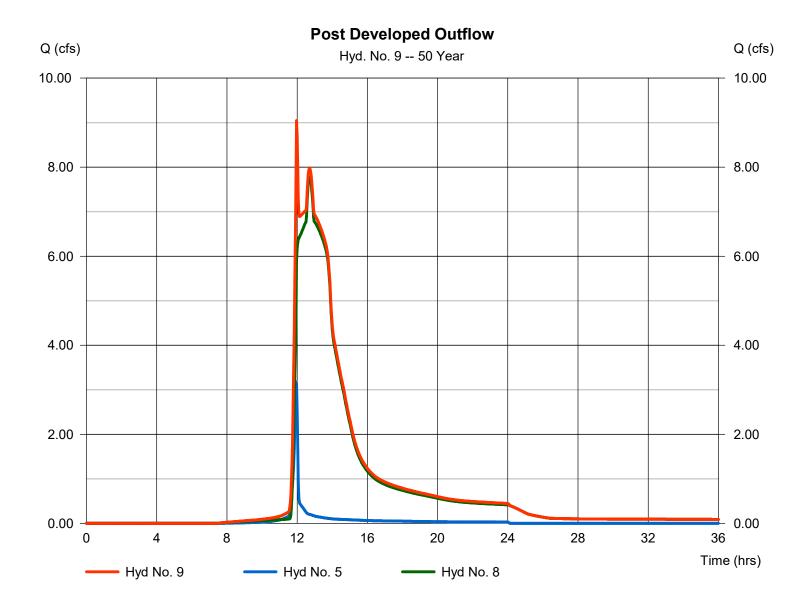

Wednesday, 07 / 26 / 2023

Hyd. No. 8

Basin

Hydrograph type Peak discharge = 7.776 cfs= Reservoir Storm frequency = 50 yrsTime to peak $= 12.70 \, hrs$ Time interval = 2 min Hyd. volume = 100,564 cuft Inflow hyd. No. Max. Elevation = 709.06 ft= 7 - Post A and B Combined = 41,270 cuftReservoir name = Detention Basin Max. Storage

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Hyd. No. 9

Post Developed Outflow

Hydrograph type = Combine Peak discharge = 9.045 cfsStorm frequency Time to peak = 50 yrs $= 11.97 \, hrs$ Time interval = 2 min Hyd. volume = 107,015 cuft Inflow hyds. = 5, 8Contrib. drain. area = 0.720 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

lyd. Io.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	10.19	2	732	44,118				Predeveloped A
	SCS Runoff	9.521	2	742	53,985				Predeveloped B
3	SCS Runoff	24.00	2	716	54,402				Postdeveloped A
4	SCS Runoff	9.521	2	742	53,985				Postdeveloped B
5	SCS Runoff	3.383	2	716	6,875				Postdeveloped C
6	Combine	18.71	2	736	98,103	1, 2,			Combined Predeveloped A&B
7	Combine	27.34	2	716	108,387	3, 4,			Post A and B Combined
3	Reservoir	9.392	2	756	106,087	7	709.13	42,298	Basin
9	Combine	9.621	2	756	112,961	5, 8			Post Developed Outflow
 E2:	│ 31032 Hydro.	gpw			Return F	│ Period: 100	⊥ Year	Wednesda	y, 07 / 26 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

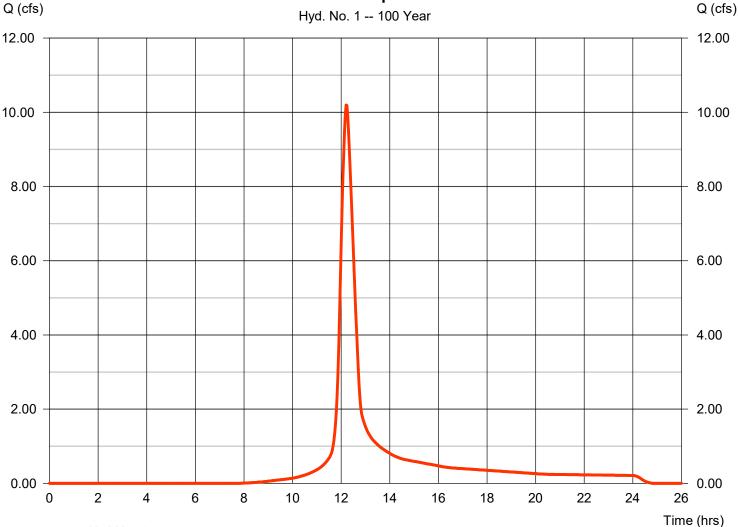
Hyd. No. 1

Predeveloped A

Hydrograph type = SCS Runoff
Storm frequency = 100 yrs
Time interval = 2 min
Drainage area = 4.420 ac
Basin Slope = 0.0 %
Tc method
Total precip. = 4.90 in
Storm duration = 24 hrs

Peak discharge = 10.19 cfs Time to peak = 12.20 hrs Hyd. volume = 44,118 cuft

Curve number = 79* Hydraulic length = 0 ft


Time of conc. (Tc) = 30.90 min
Distribution = Type II
Shape factor = 484

Hyd No. 1

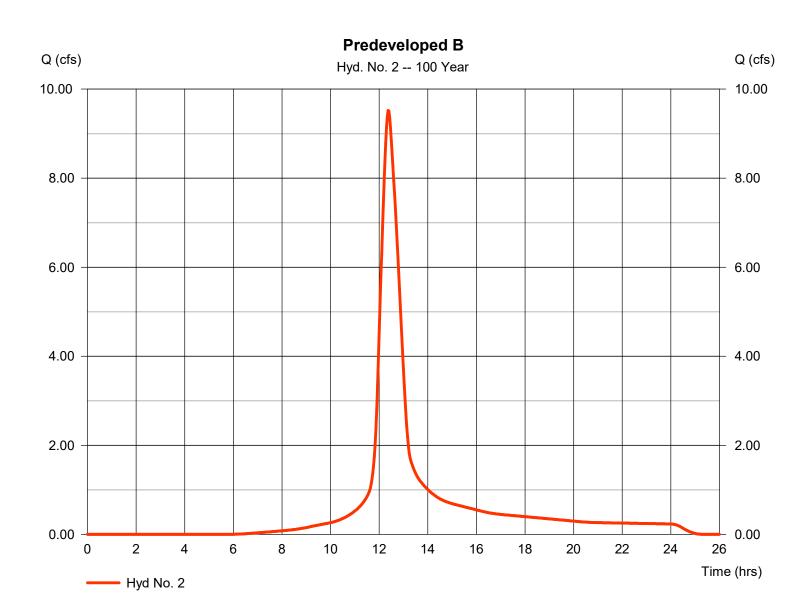
Use City of Columbus rainfall

City of Columbus is now being used.

Predeveloped A

^{*} Composite (Area/CN) = [(0.055 x 98) + (4.365 x 79)] / 4.420

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

Hyd. No. 2

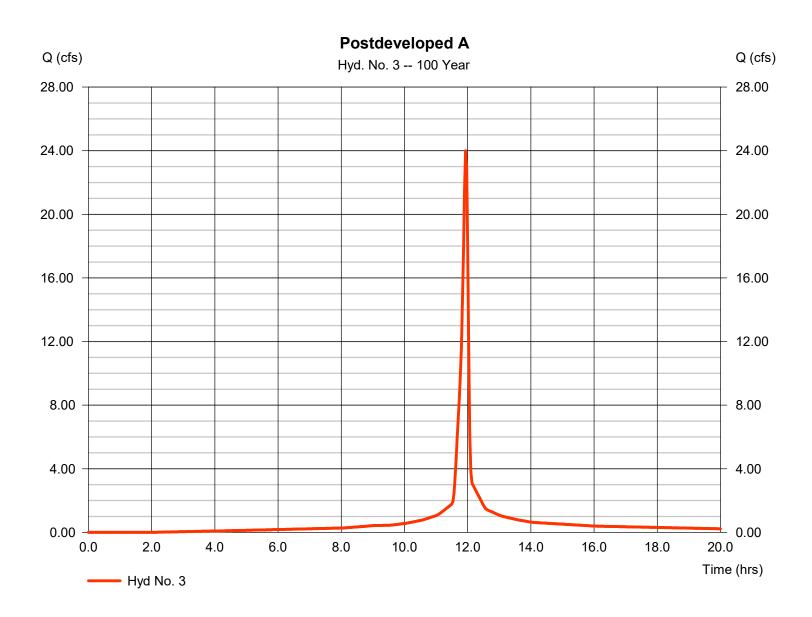
Predeveloped B

Hydrograph type = SCS Runoff Peak discharge = 9.521 cfsStorm frequency = 100 yrsTime to peak $= 12.37 \, hrs$ Time interval = 2 min Hyd. volume = 53.985 cuft Drainage area Curve number = 4.540 ac= 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 49.90 min = TR55 Total precip. = 4.90 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(1.460 \times 98) + (3.080 \times 79)] / 4.540$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

= 24 hrs


Wednesday, 07 / 26 / 2023

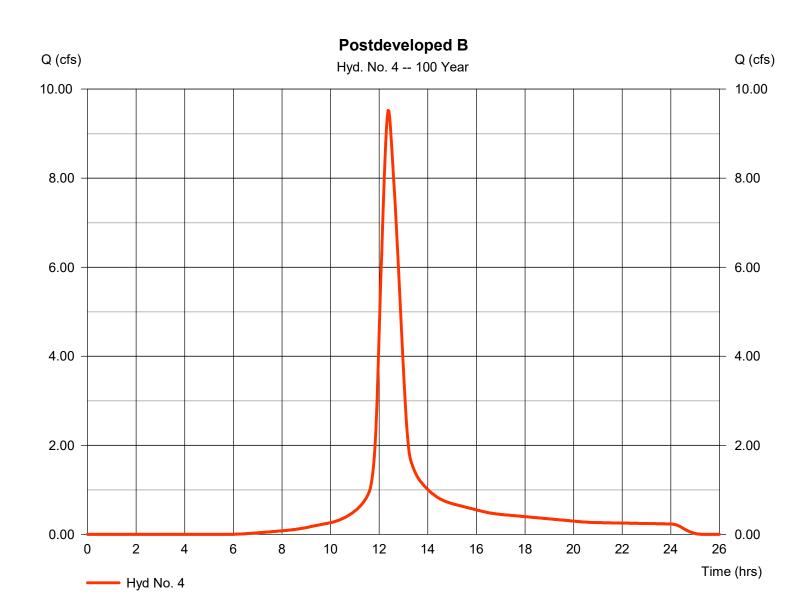
Hyd. No. 3

Postdeveloped A

Hydrograph type = SCS Runoff Peak discharge = 24.00 cfsStorm frequency = 100 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 54.402 cuftDrainage area Curve number = 3.700 ac= 95* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.30 min = TR55 Total precip. = 4.90 inDistribution = Type II Storm duration Shape factor = 484

^{*} Composite (Area/CN) = $[(3.130 \times 98) + (0.570 \times 79)] / 3.700$

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Wednesday, 07 / 26 / 2023

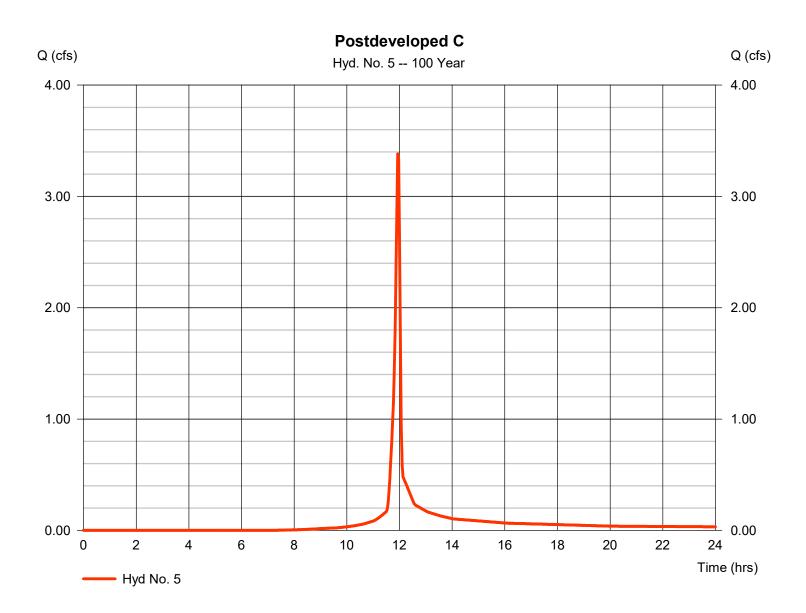
Hyd. No. 4

Postdeveloped B

Hydrograph type = SCS Runoff Peak discharge = 9.521 cfsStorm frequency = 100 yrsTime to peak $= 12.37 \, hrs$ Time interval = 2 min Hyd. volume = 53.985 cuft Drainage area = 4.540 acCurve number = 85* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 49.90 min = TR55 Total precip. = 4.90 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(1.460 x 98) + (3.080 x 79)] / 4.540

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

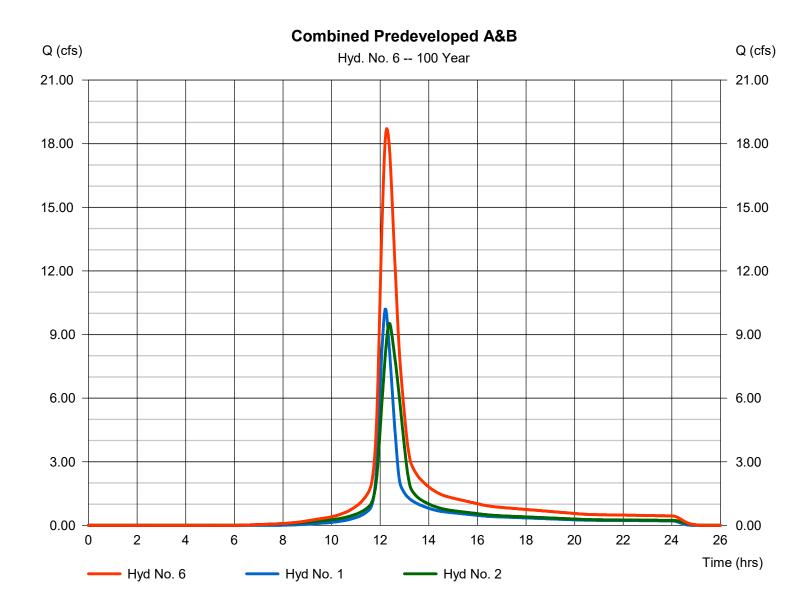

Wednesday, 07 / 26 / 2023

Hyd. No. 5

Postdeveloped C

Hydrograph type = SCS Runoff Peak discharge = 3.383 cfsStorm frequency = 100 yrsTime to peak $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 6.875 cuftDrainage area Curve number = 0.720 ac= 80* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 5.00 min = User Total precip. = 4.90 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(0.050 \times 98) + (0.670 \times 79)] / 0.720$

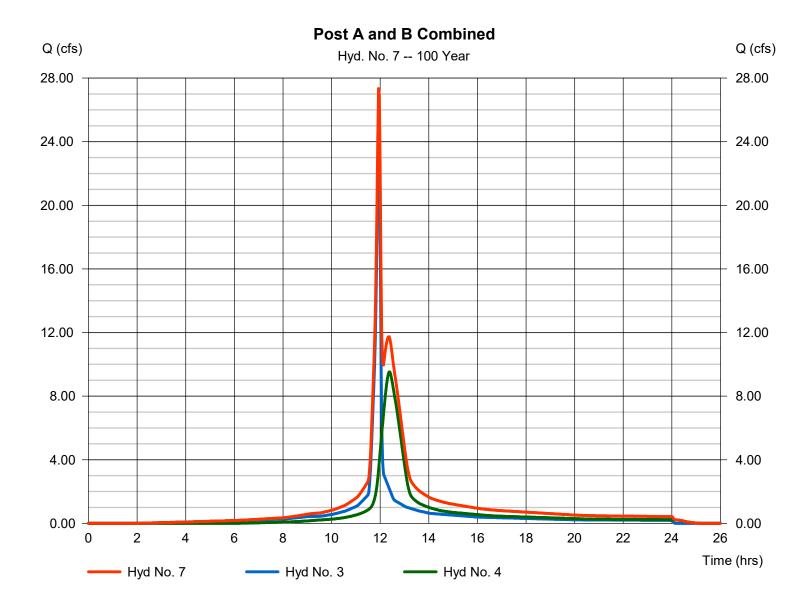

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Hyd. No. 6

Combined Predeveloped A&B

Hydrograph type = Combine Peak discharge = 18.71 cfsStorm frequency Time to peak = 100 yrs $= 12.27 \, hrs$ Time interval = 2 min Hyd. volume = 98,103 cuft Inflow hyds. = 1, 2 Contrib. drain. area = 8.960 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

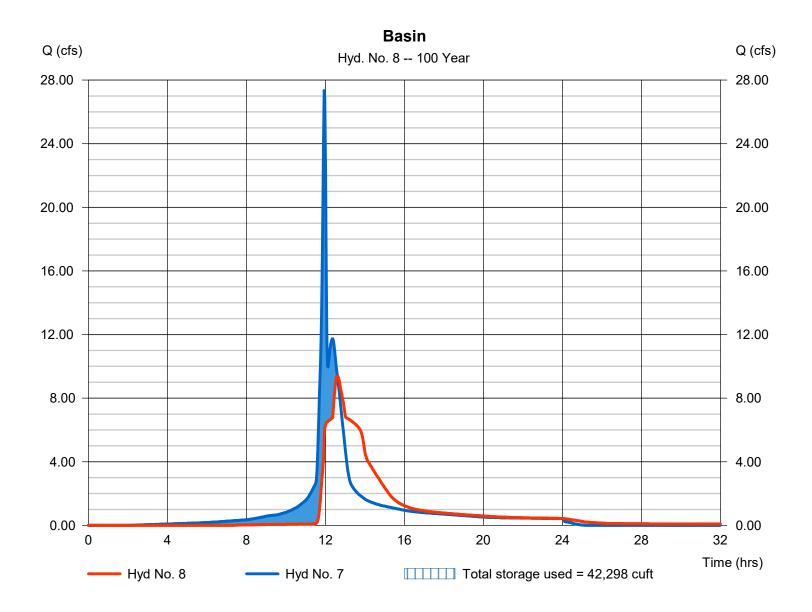
Wednesday, 07 / 26 / 2023

Hyd. No. 7

Post A and B Combined

Hydrograph type = Combine Peak discharge = 27.34 cfsStorm frequency Time to peak = 100 yrs $= 11.93 \, hrs$ Time interval = 2 min Hyd. volume = 108,387 cuft Inflow hyds. Contrib. drain. area = 8.240 ac= 3, 4

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

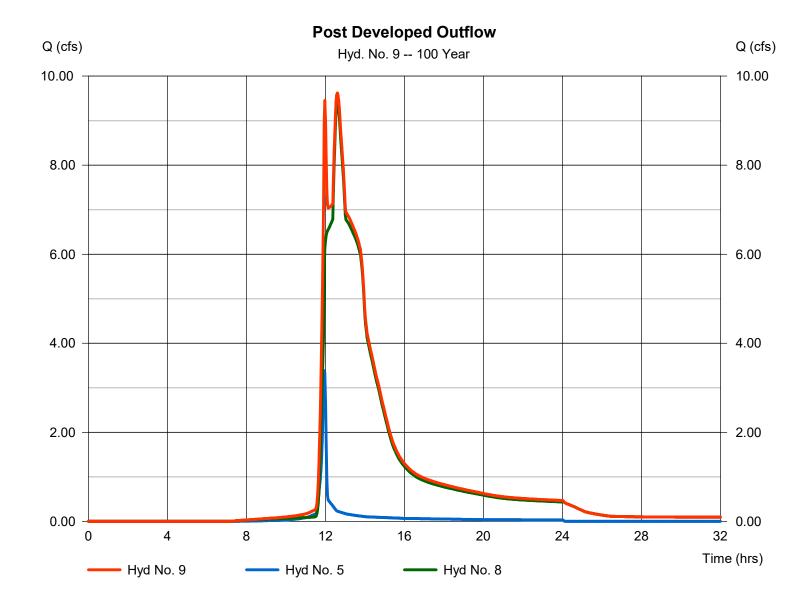

Wednesday, 07 / 26 / 2023

Hyd. No. 8

Basin

Hydrograph type Peak discharge = 9.392 cfs= Reservoir Storm frequency = 100 yrsTime to peak $= 12.60 \, hrs$ Time interval = 2 min Hyd. volume = 106,087 cuft Inflow hyd. No. Max. Elevation = 709.13 ft= 7 - Post A and B Combined = Detention Basin = 42,298 cuft Reservoir name Max. Storage

Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Hyd. No. 9

Post Developed Outflow

Hydrograph type = Combine Peak discharge = 9.621 cfsStorm frequency Time to peak = 100 yrs $= 12.60 \, hrs$ Time interval = 2 min Hyd. volume = 112,961 cuft Inflow hyds. = 5, 8Contrib. drain. area = 0.720 ac

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 07 / 26 / 2023

Return Period	Intensity-Du	Intensity-Duration-Frequency Equation Coefficients (FHA)								
(Yrs)	В	D	E	(N/A)						
1	40.9319	9.8000	0.8767							
2	45.5761	9.6000	0.8553							
3	0.0000	0.0000	0.0000							
5	51.8623	9.6000	0.8320							
10	48.5688	8.5000	0.7836							
25	45.2702	7.3000	0.7295							
50	43.8185	6.5000	0.6970							
100	41.7893	5.7000	0.6627							

File name: Pickaway Co.IDF

Intensity = B / (Tc + D)^E

Intensity Values (in/hr)													
5 min	10	15	20	25	30	35	40	45	50	55	60		
3.86	2.99	2.45	2.09	1.82	1.62	1.46	1.33	1.22	1.13	1.06	0.99		
4.60	3.58	2.95	2.51	2.20	1.96	1.77	1.62	1.49	1.38	1.29	1.21		
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
5.57	4.36	3.61	3.10	2.72	2.43	2.20	2.01	1.86	1.73	1.62	1.52		
6.32	4.94	4.09	3.52	3.10	2.78	2.53	2.32	2.15	2.00	1.88	1.77		
7.26	5.66	4.70	4.06	3.59	3.23	2.95	2.72	2.52	2.36	2.22	2.10		
7.99	6.21	5.16	4.46	3.96	3.57	3.26	3.02	2.81	2.63	2.48	2.35		
8.69	6.74	5.61	4.86	4.32	3.91	3.58	3.32	3.10	2.91	2.75	2.61		
	3.86 4.60 0.00 5.57 6.32 7.26 7.99	3.86 2.99 4.60 3.58 0.00 0.00 5.57 4.36 6.32 4.94 7.26 5.66 7.99 6.21	3.86 2.99 2.45 4.60 3.58 2.95 0.00 0.00 0.00 5.57 4.36 3.61 6.32 4.94 4.09 7.26 5.66 4.70 7.99 6.21 5.16	3.86 2.99 2.45 2.09 4.60 3.58 2.95 2.51 0.00 0.00 0.00 0.00 5.57 4.36 3.61 3.10 6.32 4.94 4.09 3.52 7.26 5.66 4.70 4.06 7.99 6.21 5.16 4.46	5 min 10 15 20 25 3.86 2.99 2.45 2.09 1.82 4.60 3.58 2.95 2.51 2.20 0.00 0.00 0.00 0.00 0.00 5.57 4.36 3.61 3.10 2.72 6.32 4.94 4.09 3.52 3.10 7.26 5.66 4.70 4.06 3.59 7.99 6.21 5.16 4.46 3.96	5 min 10 15 20 25 30 3.86 2.99 2.45 2.09 1.82 1.62 4.60 3.58 2.95 2.51 2.20 1.96 0.00 0.00 0.00 0.00 0.00 0.00 5.57 4.36 3.61 3.10 2.72 2.43 6.32 4.94 4.09 3.52 3.10 2.78 7.26 5.66 4.70 4.06 3.59 3.23 7.99 6.21 5.16 4.46 3.96 3.57	5 min 10 15 20 25 30 35 3.86 2.99 2.45 2.09 1.82 1.62 1.46 4.60 3.58 2.95 2.51 2.20 1.96 1.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.57 4.36 3.61 3.10 2.72 2.43 2.20 6.32 4.94 4.09 3.52 3.10 2.78 2.53 7.26 5.66 4.70 4.06 3.59 3.23 2.95 7.99 6.21 5.16 4.46 3.96 3.57 3.26	5 min 10 15 20 25 30 35 40 3.86 2.99 2.45 2.09 1.82 1.62 1.46 1.33 4.60 3.58 2.95 2.51 2.20 1.96 1.77 1.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.57 4.36 3.61 3.10 2.72 2.43 2.20 2.01 6.32 4.94 4.09 3.52 3.10 2.78 2.53 2.32 7.26 5.66 4.70 4.06 3.59 3.23 2.95 2.72 7.99 6.21 5.16 4.46 3.96 3.57 3.26 3.02	5 min 10 15 20 25 30 35 40 45 3.86 2.99 2.45 2.09 1.82 1.62 1.46 1.33 1.22 4.60 3.58 2.95 2.51 2.20 1.96 1.77 1.62 1.49 0.00 0	5 min 10 15 20 25 30 35 40 45 50 3.86 2.99 2.45 2.09 1.82 1.62 1.46 1.33 1.22 1.13 4.60 3.58 2.95 2.51 2.20 1.96 1.77 1.62 1.49 1.38 0.00 0.0	5 min 10 15 20 25 30 35 40 45 50 55 3.86 2.99 2.45 2.09 1.82 1.62 1.46 1.33 1.22 1.13 1.06 4.60 3.58 2.95 2.51 2.20 1.96 1.77 1.62 1.49 1.38 1.29 0.00<		

Tc = time in minutes. Values may exceed 60.

Precip. file name: T:\Support\Drainage SCS Tables\Fairfield Co Precipitation.psp

	Rainfall Precipitation Table (fin)											
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr				
SCS 24-hour	2.30	2.50	0.00	3.30	3.70	4.30	4.70	4.90				
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				

Use City of Columbus rainfall data.

City of Columbus is now being used.